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FOREWORD

This report describing the formulation of the Statistical
Trajectory Estimation Programs is provided in accordance with
Part IV.A.L of NASA Contract NAS 1-8500. An additional report
describing utilization of these programs is presented in NASA

CR-66837.

This work was conducted for NASA Langley Research Center
under the direction of Robert J. Mayhue (Technical Monitor),
Sherwood Hoffman (Alternate Monitor), both of the Applied
Materials and Physics Division, and George B. Boyles (Computer
Analyst) of the Analysis and Computation Division.
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FORMULATION ON STATISTICAL TRAJECTORY ESTIMATION PROGRAMS

By William E, Wagner and Arno C. Serold
Martin Marietta Corporation

SUMMARY

This report documents the theory, equations, and numerical
techniques in the Statistical Trajectory Estimation Programs
(STEP1 and STEP2)., These programs were originally developed and
used on the U,S, Air Force Precision Recovery Including Maneuver -
ing Entry (PRIME) Program to perform the postflight trajectory
reconstruction and analysis of the SV-5D maneuverable lifting
reentry vehicle, They have since been considerably improved under
NASA Contract NAS1-8500.

STEP uses the recursive Kalman minimum variance filtering
algorithms to fit the equations of motion to trajectory measure-
ment data, The programs are formulated to process position
radar tracking and airborne gyro and accelerometer measurements,
The equations of motion account for three dimensional trajectories
in the vicinity of an oblate rotating planet., Vehicle maneuvers
in pitch, roll, and yaw within the atmosphere are acceptable,
STEP1 is restricted to nonthrusting vehicles; STEP2 is applicable
to any vehicle recording accelerations, inertial angular rates,
and having at least partial radar coverage.

In addition to postflight reconstruction, the programs can
be used to solve preflight trajectory simulation and error
analysis problems,

I. INTRODUCTION

The postflight data analysis task is a vital part of all
scientific space missions, The success of any planetary space
mission depends on the amount of information retrieved from the
measuremenis taken, Certainly the enormous costs required to
design, construct, instrument, fly, and support of flights of
space vehicles justifies a significant expenditure of effort
in analyzing the measurements taken,



The problem to which we address ourselves here is the accurate
determination of the trajectory, subsystem performance, and atmos-
pheric characteristics of a flight vehicle from data sensed during
the flight. The information assumed to be at our disposal for
performing such analysis includes ground- or ship-based position
radar or optical tracking, airborne accelerometer, and gyro data.

The process of.using these measured data to perform the re-
construction is called trajectory estimation., Webster defines
estimation as an approximate calculation. In fact, the trajec-
tory estimation process is nothing more than using the only in-
formation available (airborne and ground-based semsor data) to
approximately calculate the position and velocity of the vehicle,
How well this approximation agrees with the vehicle's actual
position and velocity may never be exactly known, but can be es-
timated. Thus, the second approximate calculation concerns the
accuracy of the trajectory estimate.

In the past, two basic concepts have been used to reconstruct
trajectories in the Earth's atmosphere. The first comnsists of
using radar or optical tracking data to determine vehicle posi-
tion (refs. 1 and 2), The velocity is determined from Doppler
measurements and/or by numerically differentiating the position
data. The second technique consists of integrating the airborne
accelerometer and gyro data, Double integration of the accelera-
tions yields the position/time history, The accelerometers are
oriented during the integrations via the integrated gyro data.

The first method, using radar data, requires continuous radar
coverage, yields no vehicle attitude information, and, if numerical
differentiation of position data is used, can produce inaccurate
velocity information. The second method, using accelerometer and
gyro data, requires accurate information concerning initial posi-
tion, velocity, and attitude to commence the integration. Further-
more, errors propagate rapidly as a result of initial condition
errors or systematic errors in the data,

There are many variations of these two basic methods. Having
determined the trajectory, and assuming the aerodynamic coeffi-
cients known from preflight analyses, the measured accelerations
yield the atmospheric density from the equation p = - (Zm aXB)/
(Vi S CA)' Assuming a gravitational acceleration known, the
hydrostatic equation, dp = - pg dho, can be integrated to yield

the pressure/time history. The assumption is usually made that
the atmosphere is adiabatic (temperature a linear function of
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altitude) or isothermal (temperature constant), thus permitting
explicit integration of the hydrostatic equation., Knowing the
pressure, the equation of state p =(Mo p)/(R* T) can be used

to determine the temperature (ref. 3). Such techniques are called
deterministic because the number of variables to be determined
equals the number of discrete measurements used.

The reconstruction technique described herein is specifically
oriented toward using statistical estimation theory to reconstruct
trajectory, atmospheric, and aerodynamic characteristics, The use
of estimation theory to determine trajectory characteristics is
not new, Over the past 10 years, numerous investigators have used
estimation theory to determine orbits of satellites (ref. &4 thru 7).
However, the application of estimation theory to in-atmosphere
flight is relatively new and not without many unresolved difficul-
ties. In orbital and interplanetary space, the principal forces
acting on spacecraft are gravitational and are accurately repre-
sented mathematically; however, the principal forces acting on in-
atmosphere vehicles are aerodynamic and are rather imprecisely
characterized mathematically., Furthermore, in the atmosphere the
trajectory is predominantly influenced by the vehicle's attitude,
which, in turn, is governed by complex guidance and autopilot
systems through fins, flaps, or other external devices. Thus,
the principal difficulty in applying estimation theory to in-
atmosphere problems lies in formulating the dynamic model,

The statistical trajectory estimation problem can be described
as follows, Given a dynamic model consisting of the equations of
motion that describe the flight of a vehicle through the atmos-
phere. These equations of motion characterizing this model can be
written as ordinary first-order nonlinear differential equations.
There are a total of 12 equations -- three translational dynamic
equations that balance external forces and yield the velocity
vector, three translational kinematic equations that yield posi-
tion, three rotational dynamic equations that balance external
torques and yield the inertial angular rate vector, and three
rotational kinematic equations that yield angular orientation or
attitude. If 12 initial conditions are specified for the dependent
variables, the equations can be integrated in time to yield a
trajectory. At any instant of time, the range (R), azimuth
(A), and elevation (E) from the vehicle to a tracking radar
can be determined from three algebraic equations that yield R,

A, and E as functions of the instantaneous position of the
vehicle, which, in turn, is a function of the initial conditions
from which the equations of motion were integrated. Other sensor



data can similarly be calculated, but for simplicity, we will
limit this discussion to R, A, and E,

The trajectory estimation problem is the inverse of that just
described. Given the tracker R, A, E time history, we can
determine the initial conditions that yield a trajectory satisfy-
ing the given R, A, E time history. Given exactly 12 R, A,
E versus time points, we could deterministically solve for the
12 initial conditions to yield a trajectory that exactly satisfies
the 12 R, A, E points. Given more than 12 R, A, E points,
however, we have an overdetermined problem (more requirements
than variables to solve for) and must resort to regression analy-
sis, One of the simplest methods would be to determine the 12
initial conditions that cause the sum of the squares of the
residuals between the measured R, A, E points and the calcu-
lated R, A, E points to be minimum. This would be a least-
squares solution, Because some measurements are better than
others, one might weight the residuals by the inverse of their
standard deviations and obtain a weighted least-squares solution,
Weighting the data by the inverse of its covariance matrix yields
a minimum variance solution, For uncorrelated data, the minimum
variance and weighted least-squares solutions are the same, STEP
uses linear filter theory to recursively obtain the minimum-vari-~
ance (or weighted least squares) solution for uncorrelated data,
The general theory underlying the filter application is presented
in Section IIIL,

The difficulty in applying the technique just described lies
in formulation of the equations of motion. For example, in the
three rotational dynamic equations that balance external torques,
all guidance and autopilot functions that steer engines, flaps,
fins, gas jets, etc., must be properly described mathematically.
Furthermore, all aerodynamic and thrust moments must be accurately
described. Accurate representation of all torques is difficult
because of all the uncertainties involved. Therefore, the STEP
models omit the three rotational dynamic equations and use instead
the inertial angular rates measured by airborne gyros aboard the
vehicle, Systematic error in these rates is accounted for in the
modeling (e.g., gyro misalignment, scale factor, random bias, g-
bias, and anisoelastic drift). Thus, we have a STEP1 formulation
that contains the nine equations of motion but requires inertial
angular rate histories, Solutions of its dynamic model satisfy
the inertial angular rate data exactly., STEPl fits the dynamic
model to position radar tracking data as well as airborne ac-
celerometer data,



The major difficulty in STEPl is that of accurately repre-
senting the external aerodynamic accelerations acting on the ve-
hicle and required in the three translational dynamic equations,
The aerodynamic acceleration representation requires accurate
modeling of aerodynamic coefficients, atmospheric density, and
vehicle mass, which are usually not known precisely. Thus, the
STEP2 model omits the external acceleration representation by
using the airborne accelerometer measurements directly in the
translational dynamic equations of motion, Systematic error in
the accelerometer data is accounted for in the modeling. STEP2
fits its dynamic model to the position radar tracking data only.

We see that both STEPL and STEP2 determine the nine initial
conditions (three velocity, three position, three attitude) from
which the equations of motion must be integrated to satisfy the
tracking measurements (and accelerometer measurements for STEPL)
in a minimum-variance sense. The nonlinear equations of motion
in the original STEP models as well as the minimum-variance fil-
ter theory are presented in reference 8. The detailed equations
of motion in the current programs are described in Section IV,
The equations that characterize the measurements to which the
equations of motion are fit are presented in Section VII, The
primary difference between the original STEP formulation (ref. 8),
and that described herein is in the form of the equations of
motion, In the original formulation the state variables in the
dynamic equations of translation were the relative velocity, path
angle, and heading angle. The state variables in the kinematic
equations of rotations were the roll angle about the velocity
vector, angle of attack, and sideslip angle., The formulation had
the advantage of yielding state variables of practical interest
to the user but had the disadvantage of being cumbersome and
possessing singularities, In the formulation reported herein,
the velocity is integrated in inertial Cartesian components and
the attitude is characterized by a four parameter system of Euler
parameters. The dynamic model has thus been significantly sim-
plified, but now the state variables have little practical utility
to the user. Therefore, optiohal forms of input and output have
been provided to permit the user to work with more familiar vari-
ables, These input/output transformations are presented in Sec-
tion VI,

Other parameters in the equations of motion can be estimated
just as the initial conditions are, For instance, biases can be
included in the modeling of the aerodynamic coefficients, If the
time variations of such biases can be described by differential



equations, the differential equations can be added to the equa~
tions of motion and the bias estimated along with the other ini-
tial conditions. Otherwise, the biases must be assumed constant
over the trajectory, the constant value being estimated along
with the initial conditions, The improved STEP models include
150 such systematic error sources modeled on the accelerations,
inertial angular rates, aerodynamic coefficients, density, cen-
ter of gravity, atmospheric winds, mass, and tracking radar
measurements,
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II., SYMBOLS AND ABBREVIATIONS

azimuth of radar tracker. Ac is calculated with-
out systematic error, equation (238b), AM is
modeled or measured with systematic error, equa-

tion (239)

acceleration relative to planet surface, equation
(57)

parameters in the airborne radar equation, equa-
tion (277)

accelerations acting through center of gravity in
body axes directions

acceleration modeled or measured at inertial
measuring unit in body axes directions with sys-

tematic error included

acceleration at inertial measuring unit in body
axes directions without systematic error

anisoelastic error model parameter, equation (155)

orthogonal transformation matrix used in quaternion
development, equation (72)

parameters used in input transformation defined in
equation (228)

matrix inverse defined in equation (266)

modeled error coefficient defined in equations
(147) to (159), and equations (239)

covariance operator

parameters in airborne radar equations, defined in
equations (276)

speed of sound, equation (125)

Correlation between the model parameter errors u
and expanded state variable errors =z, seec equa-
tion (50)

Correlation between the measurement parameter er-
rors v and edpanded state variable errors z,
see equation (50)

~{



D determinent defined in equation (265)
D covariance of model parameters U, equation (41)

D parameters in output transformation defined in
equation (232)

d parameters in input transformation defined in
equation (227)

E, Ec, Ey elevation angle of radar tracker, EC is calculated
without systematic error, equation (238c), EM is
modeled or measured with systematic error, equa-
tion (239)

e( ) expectation operator

e unit vector designation

e(pse1,en,e3 Euler parameters, equations (79) and (101)

e, parameters in input transformations, defined in

] equations (218)
F external force vector

FXG’ FYG’ FZG components ?f external force vector in G-frame
axes, equation (63)

F coefficient matrix of linear differential equa-
tions of motion, equation (3)

f nonlinear equations of motion, equations (1) and
(45)
G coefficients of linearized measurement equations,

equation (4)

G proportionality factor used in equations (123),
depending on units of H, 1i.e., GdH = g(ho)dho,

where g(ho) is the acceleration of gravity

G transformation matrix between G-frame and B-frame,
defined in equation (79)

g nonlinear measurement equations, equations (2)
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lgs mg> g
lgs Mg B4

elements of transformation matrix G

geopotential attitude and base points for atmos-
phere calculations, equation (121)

partial derivative of measurement equations with
respect to measurement parameters V, equation
(51b)

altitude of vehicle above spherical planet and
oblate planet

input and out transformation functions defined in
equations (207a) and (209a)

altitude of tracking station above oblate planet,
equation (236)

identity matrix

parameter in minimum variance equations, equations

(53£)

coefficient of second gravitational harmonic, e-
quation (105)

optimal linear gain, equation (53e)

slope of molecular scale temperature versus alti-
tude profile, equation (122)

vehicle reference length used in calculating
Reynolds number, equation (148)

number of components in W wvector, equation (41)

direction cosines defined in equations (269) and
(270)

molecular weight of the atmosphere at sea level,
equation (123)

Mach number, equation (143)
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NI’ NO
P, Py

P

P, Py

PRIME

Q, Q

q

q

q

R*

Ra» Rp> Rp

transformation matrixX in quaternion development
defined ir equation (74)

vehicle mass

modeled mass time history, equation (149)

matrices for performing input and output transfor-
mation of covariance and correlation matrices,

equations (208) and (210)

inertial angular rate about roll axis without and
with systematic error, equation (154)

covariance matrix of state or expanded state er-
rors, equations (21), (53b), and (54b)

atmospheric pressure and base pressures in atmos-
phere calculations, equation (123)

Precision Recovery Including Maneuvering Entry

inertial angular rate about pitch axis without and
with systematic error, equation (154)

quaternion defined in equation (65)
dynamic pressure, equation (142)
number of components in U wvector, equation (41)

range of radar tracker, Rc’ is calculated without
systematic error, equation (238a), RM is modeled

or measured with systematic error, equation (239)

inertial angular rate about the yaw axis without
and with systematic error, equation (154)

universal gas constant, equation (123)
average, equitorial and polar planet radius

radius of oblate earth at latitude ¢, equation
(145)



R
e

R
R

Ryw> Ryp> Rzp
Rye’ Bye Rze

Reynolds number, equation (148)

slant range for airborne radar, equation (273)

components of airborne radar range vector in B-
frame and G-frame

radial distance from planet center to vehicle,
equation (63); also used as position vector from

planet center to vehicle, equation (56)

radial distance from planet center to tracking
station, equation (236)

number of components in V vector, equation (44)
covariance of matrix V, equation (45)

vehicle reference area for aerodynamic coefficients,
equation (110)

vector used in quaternion development (see fig. 3)
Sutherland coefficient in equation (126)

sum of squares of residuals in equation (13)
Statistical Trajectory Estimation Programs
temperature

transformation matrix for aerodynamic coefficients
in equation (196)

molecular scale temperature and base points, equa-
tions (122)

time
uncertain model parameter vector in the equations

of motion, its mean value, and perturbation, equa-
tion (49)

11
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u, v, w
YA VA0 VA
“g> VB> VB
u v

\

2,

2,

z

components of inertial velocity in G-frame axes,
equations (62) and (63)

components of relative velocity in the G-frame
axes, equation (114)

components of relative velocity in B-frame axes,
equation (116)

components of horizontal wind vector from the north
and east, respectively, equation (152)

uncertain measurement parameter vector, its mean
value, and perturbation, equation (49)

velocity relative to planet surface, equation (57)
velocity relative to atmosphere, equation (141)

model and measurement parameters to be estimated
and their perturbations, equation (41)

state vector, its perturbation and best estimate
of perturbation, equations (1), (6a), and (14)

corrected distance from the center of gravity to

the inertial measuring unit (accelerometers) meas-
ured along the B-frame axes; positive for the IMU
forward, starboard, and below the center of gravity,
see equation (153)

Cartesian components of tracker range vector, see
figure 6 and equation (235)

measurement vector and perturbations, equation (2)
and (4)

measurement residual vector defined in equation
(12) with components defined in equation (9)

expanded state vector include both state and model
parameters to be estimated, its perturbation, and
best estimate of perturbation, equations (48), (49),
and (53a)
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Greek

o, B

angle of attack and sideslip angle, degrees
Sutherland coefficient in equation (126)
specific heat ratio, equation (125)

flightpath angle of velocity vector relative to
atmosphere, equation (219)

pitch angle of body fixed radar, see equation
(271b) and figure 7, degrees

noise vector on measurements, equations (10)
incremented quaternion, equations (84) thru (87)

dummy variable used in Sections V and VII for state
variable components and model parameters Ci

angular orientation of S vector relative to G-frame
in figure 3

total resultant angle of attack, see figure 4,
degrees

difference between vehicle longitude and tracking
station longitude, equation (236)

difference between vehicle longitude and the longi-
tude of the airborne radar slant range vector/
planet surface intersection, equation (274)
longitude of vehicle, figure 2

longitude of tracking station, figure 5

parameter transition wmatrix, equation (52)

Euler angle in pitch, equations (212) thru (217),
degrees

matrix abbreviation defined in equation (13)

azimuth of velocity vector relative to atmosphere,
equation (219)

13
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azimuth of airborne radar vector, see equation
(271a) and figure 7

coefficient of the first harmonic of gravity, equa-
tion (105)

atmospheric viscosity, equation (126)

rotation in quaternion development, equation (74)
and figure 3

steering angle, see figure 4, degrees

atmospheric density after and before error model
corrections, equation (151)

batch processing weighting matrix, equation (16)

roll angle about the velocity vector, figure &,
degrees

standard deviation and correlation coefficient,
equation (18)

covariance or weighting matrix of measurement data
point, equation (16)

time difference in mass error model, equation (150)

difference between geodetic and geocentric latitude
at the tracking station, equation (236)

latitude
state transition matrix, equations (7)
geodetic latitude

geocentric and geodetic latitude of tracking sta-
tion, equation (237)

Euler angle in roll, equation (212) thru (217),
degrees

Euler angle azimuth, equation (212) thru (217),
degrees
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Subscripts

C )y
¢ )y
e

¢ g
G
€ Dy

¢ Dot
¢ Jp
¢ g

C JRer
( )S or
€ Dy

(

angular rate of B-frame and G-frame relative to
inertial space, and angular rate of B-frame rela-
tive to G-frame, equation (96)

angular rotation rate of planet about axis

€z1
relative to inertial space, equation (96)

abbreviation for cofactors in equation (264)

relative to the atwmosphere in STEPl or planet sur-
face in STEP2

refers to B-frame or base points in atmosphere de-
scription

calculated, does not include systematic error
refers to G-frame

refers to point of intersection of airborne radar
slant range vector and planet surface

either measured or modeled to characterize a meas-
urement

pertains to planet oblateness
refers to inertial measuring unit
refers to airborne radar

corresponds to reference trajectory

refers to tracking station

corresponds to x, y, or 2z axis directions

15
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III. MATHEMATICAL THEORY

Given a dynamic model consisting of ordinary first-—order non-
linear differential equations of motion that describe the flight
of a vehicle through the atmosphere,

X(t) = £[X(t),t] @

If dnitial conditions are specified for the dependent (state)
variables, X, the equations can be integrated in time to yield
a trajectory. At any instant of time the range, (R), azimuth
(A), and elevation (E) from the vehicle to a tracking radar can
be determined from three algebraic equations that yield R, A,
and E as functions of the instantaneous position of the vehicle.

Y(t) = glX(t),t] (2)

The R, A, and E at any time are, therefore, functions of the
initial conditions from which the equations of motion were inte-
grated. Other sensor measurements (e.g., accelerometer, gyro,
pressure, temperature, etc.) can similarly be calculated from equa-
tions of the form of equation (2).

The trajectory estimation problem is the reverse of that just
described. Given the radar tracking data YM(ti) at the discrete

times i =1, 2, ..., n, determine the initial conditions that
yield a trajectory satisfying the YM(ti) data. Given exactly 12

scalar data points YM(ti)’ we can deterministically solve for

the 12 initial conditions that yield a trajectory exactly satisfy-
ing the 12 YM(ti) data points. Given more than 12 data points,

however, we have an overdetermined problem (more requirements than
parameters to solve for) and must resort to regression analysis.
One of the simplest methods is to determine the initial conditionmns
that cause the sum of the squares of the residuals between the
measured data YM(ti) and that calculated via equation (2),

Y(ti)’ to be minimum. This would be a least-squares solution.

Generalizing X to be an m-component state vector and Y to be
a p—component measurement vector, we will proceed to develop such
a least-~squares solutiom.



A. Linearization

To obtain such a least-square solution, one must first linear-
ize equations (1) and (2) to obtain:

x(t) = P(t) x(t) 3)
y(t) = G(t) x(t) (4)
where
x(t) = X(t) = Xppp(t) (5a)
y(t) = Y(t) - YREF(t) (5b)
and
o <
3,  of, 3f,
o
sz 3f2 L. sz
F(t) =| 3%1 3%, 3%y (6a)
Bfm Bfm Sfm
axl 8x2 me
L - REF
28, 2g; o8,
axl ax2 me
g, %8, ., ., ., 38,
a(t) = Bxl ax2 9%y, (6b)
og og og
5_2. 5_E 5._R
i X Xy xm__REF
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Note that equations (3) and (4) govern perturbations between the
solution X(t), Y(t) and a reference solution XREF(t), YREF(t),

which satisfies equations (1) and (2). A known solution to equa-
tion (3) is ¢(ti,tj) called the state transition matrix. This

solution possesses the following properties (ref, 9):

d¢(t,to)

aT = F(B) o(t,ty) (7a)
o(t,t) =1 for all t (7b)
¢(t2,t0) = 0(t,,t1) O(t ty) (7¢)
x(t) = ¢(t,to) x(to) (74)

Properties (7a) and (7b) suggest that ¢(t,t0) can be obtained

by integrating the perturbation equations, equations (3), from
identity initial conditions at time ¢tg-

B. Batch Processing Algorithms
Substituting property (7d) into equation (4) yields
y(£) = 6(t) o(t,tg) x(ty) (8)
which relates perturbations from the reference measurement at time
t to perturbations from the reference state at time ty, Assuming

that X(t) and Y(t) are the desired 'best estimated values,"
then

M(t1) = Ym(*1) ~ Yrer(ti) %)

is the perturbation between the actual measurement and reference
measurement at time t, and should differ from y(ti) by an

amount G(ti) the noise in the measured data

u(t1) G(ti) ¢(ti,t0) X(tg) + 5(ti)

i=1, 2, ..

(10)

., I
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Considering all n measurement equations we can write

Yy = A x(tg) + 8 (11)
where
[334(2) EORGED I
. - YM.(tz)’ . G(tz) ‘f’(tz’to)’ . é.(tz) w2
_yMitnz LG(tn) $(tn’t02 Lditnz

The sum of the squares of the residuals between the measured data
YM(ti) and Y(ti) calculated from equation (2) is

s = (ST(S = [yM - A X(tO)]T [yM - A X(to)] (13)
Minimizing s with respect to x, we obtain for X
s T, V-1
x, = ()7t a oy, (14)
which is the least-squares estimate for X,. Adding §0 to

XREF(tO)’ we obtain ﬁ(to) the initial conditions for the non-

linear state variables sought. Recognize that for the solution
to be valid, equations (3) and (4) must satisfy the linearity as-
sumption. This requires that x and y be small.

Because some measurements are more accurate than others, one
might weight the residuals & by the inverse of their standard
deviation.

Equation (13) therefore becomes

=1l (15)
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where

- B
°2(t1) 0 G%(ti) 0

o?(t2) o3 (1)
. with cz(ti) = .

The weighted least-squares estimate can be written as
~ -1
X, = (AT g2 A) T AT 31 ™ an
Weighting the data by their complete covariance matrix,
- -
2
91(t1)  12(t1)  » ¢ 91p(ty)

021(t1) og(tl) .« o 0 °2p tl)
. (18)

L°pl(t1) 9pa(t1) + + + 95(E1)

one obtains a minimum variance estimate.

Equation (17) yields io as a linear function ‘of Yapo which,

in turn, is a function of the assumed random noise in the data §

from equation (11). Therefore, X, is a random vector. Assuming

that § is a jointly normally distributed white random noise vec-

tor with zero mean, then yy and likewise x, are normally dis-

tributed. The mean and covariance of § are

() =0
(19)
cov(S) = &
The mean and covariance of YM are
e(ym) = A Xg

co\r(yM) = e{[yM - e(yM)] [YM - E(yM)] T} = L

0 0% (Ep) 0 °g(t1)

(16)



The mean and covariance of ﬁo are

e(ﬁo) = (T g1 A)_l AT 571 e(yM) = x,

(21)
cov(ﬁo) = (ATE"l A)-l =P

The mean of the best estimate of ﬁo is equal to X thus ﬁo

is an unbiased. estimate. The statistics of a normally distributed
random vector are completely determined from the mean and covari-
ance. Therefore, equations (17) and (21) completely describe the

random vector N in terms of its mean, Xy and covariance, P.

C. Recursive Processing Algorithms

The estimator equation, equation (17), exhibits the computa-
tional difficulty of requiring large matrices to be calculated and
stored in the computer. Furthermore, having determined X, for

n data points YM(ti)’ i=1,2, .. .n, if an addition point
YM(tn+l) becomes available, the entire process must be repeated

using n + 1 points. It would be convenient if, after initially
determining x, using n points, we could improve this estimate

using only information contained in the (n + 1)th data point.
Such a recursive algorithm will be developed next (refs. 8 and
10 thru 15)., The best estimate X,, corresponding to processing

n data points, from equation (17) is

T _ - \=1
Xon =Pp A I ! yy where P, = (AT Y (22)

Similarly, the best estimate ﬁo corresponding to processing
n + 1 data points is

- T - - __1
Kontl = Prgl A% T*7D y¥ where Py = (AT px71 p%) (23)

From their definition, A, I, and yy are related to A%, I%, .
and yﬁ as follows:
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A% =

A £ [ O Vi
= sy L% = |77 I""2" ————— > gk = | TTTTTTTT (24)
C(*n+1) *(tar10%o) 0 197 (*n+1) Mo (tar)
Equation (23) can therefore be written
' _ -1 1
2 = [AT§¢T GT]Z* 1M A [AT:¢T GT]Z*‘I Yy (25)
On+l SO e S SN
Go yM(tn+l)
which can be manipulated into the following.
X, =X, - K [G¢ X, - yM(tn+li] (26)
n+l n n 1
T T T T{~
K=P ¢ G [oz(tn_H_) + G P ¢ G] (27)
Pn+1 = Pn - K G¢ Pn (28)
where
G = G(tn+l) and ¢ = ¢(tn+l’t0) (29)

Equations (26) thru (28) are the recursive equations sought. Given
the best estimate and covariance at time t,; corresponding to n
data points, X and Pn’ respectively, corrections can be made
n

by means of squation (26) thru (28) that yield the best estimate
and covariance corresponding to n + 1 data points. The recur-
sive correction can be least squares, weighted least squares, or
minimum variance depending on whether Oz(tn+l) is an identity

matrix, diagonal matrix of variances or complete covariance of the
(n.-i-l)th data vector. Note that if instead of estimating x at tgp,

we had used an arbitrary time, say tj’ we would have obtained

X(tjltnﬂ) = x(tj,tn) - K[Gd) x(tj|tn) - yM(tn+l)] (30)
tT [, il It

K=P, ¢ G loP(tpy1) + 6o Py ¢ 6 (31)

Poag =P, - KG ¢ P (32)




where

G = G(thyr) 3 ¢ = o(t 0ty (33)

The notation x(tjltn+l) denotes the best estimate at tj based

on processing data through tn+l' Equations (30) thru (33) can be

used for smoothing, filtering, or predicting depending on tj as

follows

t. <t

i 41 smoothing

t, = t

j = tgy filtering (34)

tj >t predicting

STEP uses filtering equations that can be obtained from equa-
tions (30) thru (33) by letting tj = to+l-

;(tn+l|tn+l) = ;‘(tn+l|tn) - K[G;‘(':n+1|tn) - yM(tn+l)] (35)
T 7]t
K =P (tg41) © [oz(tn+l) + G Po(the1) © ] (36)
Pot1(Pat1) = Pa(tnt1) ~ K G Pu(tns1) (37)
where
G = G(tn+l) (38)

The matrix Pn(tn+l) is the covariance matrix of state errors at

time t based on processing data up through t,- From the

n+1
T -1
definition of P, in equation (22), we see that P = (A g1 A) .
Using the definition of A in equation (12), with t, = t, and
to+1s We obtain the following equation for propagating P between

data points:

T
Pn(tn+l) = ¢(tn+l-’tn) Ph(tn) ¢ (tn+1’tn) (39)
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From equation (7d), we see that the state perturbations can be
propagated between data points as follows:

x(tn+l|tn> = ¢(tn+l’tn) x(tnltn) (40)

Equations (35) thru (38) are used at measurement data times to,

i=1,2, ..., n to produce a discontinuous change in x and P,

which reflect the information obtained from the (n+l)th measure-—
ment YM(tn+l)‘ Between measurements, equations (39) and (40) are

used to propagate x and P.

D. Uncertain Model Parameters

Frequently when fitting solutions of the equations of motion
to sensor data, parameters other than the state variables are
either unknown or known with limited certainty. Examples of such
parameters that are involved in the equations of motion, equation
(1), are the gravitational harmonic coefficients, the aerodynamic
lift and drag coefficients, and, conceivably, the atmospheric den-
sity. The modeled measurement equations, equation (2), similarly
can involve such parameters, e.g., tracking station locations.
Within the context of the filter theory discussed thus far, such
variables must be governed by differential equations if they are
to be estimated. For cases where the governing differential equa-
tion is known, it is merely appended to the dynamical system equa-
tions, equation (1), and the parameter becomes a state variable.
More frequently, however, the governing differential equation can-
not be defined, and special treatment must be resorted to. One
common way of handling such parameters is to consider them con-
stant, thus their governing equation can be written ii = 0. We

then speak of an expanded state vector that includes the original
state variables plus the constant model parameters to be estimated.
Occasionally, an estimate of the model parameters is not sought,
but it is desired to reflect the parameters uncertainty in the
covariance matrix of state errors.

We will next expand the filtering equations to include un-
certain model parameters in both the state equations and measure-
ment equations (Refs. 15 and 16). Some parameters will be esti-
mated, others will not. Consider the following dynamical system
composed of first-order, nonlinear differential equations that
describe the state of a vehicle:

X(t) = £[X(t), W, U, t] (41)



where X 1s an m-vector of state variables (e.g., pesition, veloc-
ity, and attitude); W 1s an %-vector of model parameters (in
either the equations of motion or measurement equations) that are
to be estimated along with the state; and U 1s a g-vector of un-
certain model parameters in the equations of motion that are not

to be estimated, but nevertheless their uncertainty shall degrade
the confidence of the state estimate. The mean value of U 1is

specified a priori to be U0 and its covariance matrix is D.

Consider W and U to be constant vectors, equation (41) can be
rewritten as follows:

X°(t) = £[X°(t),t] (42)

where

X* = (43)

o= X

The first m equations in equation (42) are identical to equation
(41). The last & + q equations merely state the W = 0 and
U=0, 4i.e., the components of W and U are constant with time.

The variables being measured at time ti are related to the

state as follows:
Y(t) = g[x’(ti), v, ti] (44)

where Y is a p-vector of measurement variables, and V is an
r~vector of uncertain measurement parameters that are not to be
estimated but whose uncertainty shall degrade the confidence of

the state estimate. The mean value of V is V0 and its covari-

ance matrix is S.
Again, expanding the state vector to include V, we have

X°7(t) = f[X"7(v),t] (45)

where

(46)

<a=E
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and

(%) = g[x (ti)’ti] (47)
The first m equations in equation (45) are identical to equation
(41), _and the last % + q + r equations state the W =0, U =0,
and V = 0.

The minimum variance filtering equations corresponding to
equations (45) and (47) are identical to equations (35) thru (40),
with X and P replaced by x°° and P°°. However, we did not
desire to estimate vectors U and V. Thus, we will partition

-

X and P~ into the parts being estimated and those not being
estimated. Defining Z to be the expanded vector being estimated,
then

Z = (48)

Perturbations in U and V about their mean values, and 2Z about
its reference solution are

u="0U - UO
z =2 - Zppy

The covariance matrix P~ 1is partitioned into a m + £ sub-
matrix P corresponding to Z and the q x q and r X r sub-
matrices D and S corresponding to U and V, respectively.

_ | .
| Cuz : CVZ } m + £
_____ | e | e
ol b op : 0 50
s |Gy, | }q (50)
e J—
I CVz I 0 ! S | } r

The matrices Cuz and CVz contain correlation terms between

u and z, and v and 2z, respectively. The vectors u and

v are assumed to be independent so that their correlation is zero.
The G matrix is partitioned into the m + 2 + s submatrix G
corresponding to Z, and the r x r submatrix H corresponding
to V
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G“=[ ¢ | 0 H] (51a)

where

G = (Qg) and H = (EE) (51b)

The state transition matrix ¢~ 1is partitioned into the (m X £)
X (m + %) submatrix corresponding to 3z(tn+ll//8z(tn) s the

(m + 2) X q submatrix 6 corresponding to Pz(tn+ll//8u,&nﬂ,

and identity and null submatrixes as follows:

b f 9 i 0 m+ 2
—_—— =t
6°° = 011 : 0 q (52)
SRR [
| I
0 | 0 ) I T

Because u and v are not being estimated, their covariances

D and S in equation (50) will remain constant throughout the
minimum variance processing. Had U and V been permitted to
be estimated, they would have been included in Z and their co-
variance would been updated.

Substituting equations (48) thru (52) into equatioms (35) thru
(37) yields the following recursive minimum variance filtering

equations for an expanded state with uncertain parameters contained
in the equations of motion and measurement equations:

2(tn+l|tn) = 2(tn+l|tn) - K[éé(tn+lltn) - yM(tn+l)] (53a)

T 1" (s3m)
Pn+l(tn+l) = Pn(tn+l) - K Pn(tn+1) G + Cvzn(tn+l) H

Cuzpy ((n#1) = Cuzp (Pn+l) - K[G Cuzn(tnﬂ_)] (53¢)

cvzn+l(tn+1) = Cvzn(tn+1) - K[G Cyz_(Enr1) * H s] (53d)
T T| -1

K= [Pn(tn+1) ¢+ Cvz(tn+l) H ] J (53e)

T T T T T
J=0 Pn(tn+1) G+ G Cvzn(tn+l) 4 + H Cvzn(tn+l) G + HSH + oz(tn+l)

(53f)
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The estimate, covariance, and correlation matrices are propagated
between measurement points by means of the following equation ob-
tained from equations (39) and (40):

(54c)

- = - 54
2(the1lty) = ¢ 2(tylt)) (54a)
T T T T T
Pn(tn+l) =9 Pn(tn) ¢ + ¢ Cuzn(tn) 6 + ¢ Cuzn(tn) ¢ + 6D8
Cuz (tn+l) =9 Cuz (tn) +60D
n n
Cvz (tn+l) =0 Cvz t (544d)
n n n
where
¢, = ¢(tn+l,tn), G = G(tn+l), H= H(tn+l), and 0 = e(tn+1) (54e)

E. Computational Procedures

Because of the complexity of the recursive filtering equations,
we will next outline the sequential operations performed when ap-
plying these equations to a problem. The flow logic diagram (fig.
1) will aid in the discussion. Sequential operations are:

1)

2)

3)

Estimate the values of the initial expanded state vec-
tor Z(to) and its covariance Po(to), the model pa-

rameters U, and V,; and their respective covariances
D and S, and the correlation matrices C (u ),
uZO 0

C .z
and vzo(to) Z(to) will be used as the reference

solution ZREF(tO)'

Set the measurement data polnt counter, i = l.

Obtain the first measurement data point of the chrono-

logically ordered data. The magnitude, YM.’ time,
i

ti’ and covariance, oz(ti), are required.

(54b)
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Figure 1,- Schematic of Recursive Filtering Logic
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4)

5)

6)

7)

8)

9

Integrate the nonlinear state equation, equations (41)
from initial conditions Z (t. ) to t,., This
REF\ "i-1 i

solution will be used as the reference. Calculate the
state transition matrix ¢(ti—l’ti) and parameter

transition matrix e(ti) corresponding to the refer-

ence solution (see Section III.F for methods of deter-
mining these matrices).

Calculate the reference value of the nonlinear meas-
ments, YREF(ti)’ from equation (44). Also calculate

G and H matrices in equation (51b) at time ¢t .
i

Calculate yM(ti)’ the difference between the actual

measurement, 'YM , and corresponding reference meas-
i

surements, YREF(ti)'

Propagate the expanded state perturbations, the co-

variance and correlation matrices from ¢t 1 to tl
i-

by means of equation (54). Note that when beginning
the process, z(tolto) = 0.

Perform the minimum variance update at t by using

equation (53) in the following order:
Calculate J;

Calculate K;
Calculate Pi(ti)’ Cuzi(ti)’ Cvzi(ti);
Calculate E(ti1ti).

The linear filter theory can now be used in either of
two ways —- either update the reference or do not up-
date the reference trajectory. When a good initial
estimate of the expanded state is unavailable and/or
the measurement data signal-to-noise ratio is large,
advantages can be gained by updating the reference;
when the signal-to-noise ratio is small and a good
reference is available, it is better not to update the
reference:



Updated reference - Add the estimate of the ex-
panded state perturbations z(tilti) to the non-

l1inear state as follows
Z(ti) = Zpep(t) * 2(t4|t1) (57)

then redefine Z(t ) to be the reference for fu-
ture processing. Because the correction z(tilti)

has been accounted for in the updated reference,
set E(t,lti) to zero for future use. Go to item
i

10).

Nonupdated reference - Do not reflect the estimate
of the perturbations z(t |ti) into the reference

state REF(ti) until all data have been processed.
Thus, ZREF(ti) is nonoptimum as the process pro-
ceeds. The corrections z(tilti) are accumulated
as shown in equation (53a). Go to item 10).

10) Update the measurement data counter, i =i + 1 and
return to item 3).

At the completion of the filtering, when either all data have
been processed or a final time has been met, the reference trajec-
tory is updated if it has not already been (1 e., updated refer-
ence mode). This expanded state vector Z(tf't ) represents the

best estimate at final time based on processing all data. It must
therefore be smoothed back to the initial time to obtain the best

estimate of the state vector at all times (between t0 and tf)

based on processing all data. The covariance matrix must also be

propagated back to t0 to give the uncertainty at any time based

on processing all data. The smoothing of the expanded state vec~
tor is accomplished by integrating equation (41) backward in time
from te to t,. The covariance and correlation matrices are

propagated backward in time via equations (54). The resulting
initial state vector can be used for a second iteration if neces-
sary or desired. The smoothed covariance matrix should not be
used on the second iteration, however, since it does not reflect
the true certainty of the first iteration, because of possible
linearity violations, and will be optimistic (too small). Good
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criteria are not currently available for selecting initial covari-
ance and correlation matrices for the second iteration; therefore,
good judgment must be used.

F. Transition Matrices

In equation (52), the state transition matrix, ¢, is an
m x (m matrix, which relates perturbations in the ex-
(m + %) (m + 2) tri hich relates perturbati in th
panded state variables at time t, to perturbations at time o+l

These perturbations occur about the nominal or reference trajec-
tory and are governed by the linearized equations of motion as
seen in equation (7a). The expanded state variable perturbations
correspond to both state variables and model parameters that are
to be estimated. When the model parameters are constant (governed
by differential equations that state that Zi = 0) the calcula-

tion of their elements in ¢ 1is simplified.

Referring back to equation (1), the nonlinear system of ordi-
nary differential equations can be linearized to yield equations
(3). The state transition matrix ¢ is a solution to the Ilinear-
ized equations as shown in equation (7a) and can be calculated by
integrating equations (3) from identity initial conditions as
shown in equation (7b).

Consider the system of differential equations in equation (45).
Linearizing these equations and integrating from identity initial
conditions yields the transition matrix in equation (52). Note
" that there are m + 2 + g + r equations in the system. However,
all but the first m equations state that the time derivative of
Wy, U, and V -equal zero. Thus the matrix ¢~ can be parti-
tioned into the following:

¢
2 \

‘ (55)
7" = 0—+1I 0 0 } L

|

j
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The upper left (m + 2) x (m + &) submatrix constitutes the state

transition matrix ¢ in equations (54). The upper middle (m + %)

x q submatrix constitutes the parameter transition matrix 6 in
equations (54). To obtain ¢ and 6 only m 1linear differen-

tial equations of motion need be integrated. However, m + 2 + q
independent vector solutions are calculated, each solution having
a different component of z or u equal unity, all other compo-
nents zero at the initial time of integration.
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IV, NONLINEAR EQUATIONS OF MOTION

The principal difficulty in formulating a reentry filtering
program arises in mathematically describing the dynamical system,
As a result, two models have been formiulated and each has been
carried through the computer program development phases. The
STEP1 model has included within it an accurate representation of
the vehicle aerodynamics as well as atmospheric conditions that
affect the aerodynamic forces. The STEP2 model bypasses the re-
quirement of specifying aerodynamic and atmospheric character-
istics by using the measured body translational accelerations
directly in the equations of motion., Both programs use the meas-
ured inertial angular rates to replace the rotational dynamics,
This alleviates the requirement of solving the full 6-D equations
of motion including guidance system and autopilot. In the follow-
ing subsections, the detailed equations of state in both their
nonlinear and linear forms are presented for STEPl and STEP2. The
linear equations of motion are used to determine the state tran-

sition matrix.
A, Axes Systems

The axes systems used in the following development are now
described with the aid of figure 2,

1. Inertial axes (I—fréme, unit vectors eyps eyrs eZI)‘—

The inertial axes is a right-hand Cartesian axes system fixed in
space. Neither its orientation nor the position of the origin
varies with time. In applying Newton's laws of motion, the dy-
namic motion is referenced to this space fixed axes. The e,

axis points through the north geographical pole; eyt and ey1
lie in the equitorial plane.

2. Planet axes (P—frame, unit vectors exp* Syp? eZP)'_

This planet fixed axes constitutes a right-hand Cartesian axes
system having its origin at the center of the planet., It is fixed
in the planet so that the axes rotate relative to the I-frame

The eZP axis points toward the north geographic pole, The e

XP

and eYP lie in the equatorial plane with eyp directed toward

the prime meridian (zero longitude),
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Figure 2.- Schematic of Earth Model

3. Geographic axes G-frame, unit vectors exa® ©yg* ©yge"

The geographic axes form a right-hand Cartesian system with origin
at the vehicle center of gravity, yet always retaining a fixed
orientation relative to the geographic directions. The eZG axis

always points in a direction toward the planet center from the ve-

hicle center of gravity; eYG points east, and eXG points north.

4, Body axes (B—frame, unit vectors eZB)'_ The

°xB* °ym?
body axes is a right-hand Cartesian system aligned with the axes
of the vehicle. The eyn axis is directed forward along the ve-

hicle's longitudinal axisj eYB points right (out the right wing),

and eZB points downward.

35



36

B. Translational Equations of Motion
Newton's second law written in vector form is
F=m?t

where F 1is the total external force vector acting on the vehicle,
m 1is the mass of the vehicle, and r 1is the position vector from
the origin of an inertial axes system to the center of mass of the
vehicle. The acceleration ¥ is related to the inertial axes
system. The external force vector F includes all aerodynamic,
propulsive, and gravitational forces acting on the body.

Expanding T in terms of velocities and accelerations rela-
tive to the planet surface yields:

. a + 2{Q x V + Q x| x7r

r = ( P ) P ( P )
relative coriolis centrapetal

acceleration acceleration acceleration

where a and V are the acceleration and velocity of the vehicle
(treated as a mass particle) relative to the moving planet, Qp'

is the angular rotation rate of the planet relative to inertial
space, and T 1is the acceleration of the mass center with respect
to inertial space., From equations (56) and (57), we obtain the
vector equations of motion

- F _ _
a_ﬁ 2<QPXV) QPX(Qer)

The velocity and acceleration can be expressed in the G-~frame axes
system as follows;:

V =19 egc + 18 COS @ eyq - r esc

[rp + 2rp + 162 sin ¢ cos 9] e

[N
|

XG

+ [(ré + 2%@) cos @ - Zréé sin o] eYG

- Iy = 102 - 2.0 a2
[r a0 r cos<Q 6<] e

(56)

(57)

(58)

(59)

(60)




W/

Substituting equations (59) and (60) into (58) yields the follow-
ing three scalar equations along the G-frame axes coordinate di-
rections

F
e = X6 _ 21 - r sin @ cos o) (éz + ZéQP + QPZ)
m

. F - -
r8 cos @ = —iﬁ ~ 2(r cos @ - r sin ¢¢)(e + QP)

F

r = D2 2 A2 3 2
= - LG + + 62 + 2 + Q
r re ¥ cos Cp( SZPG P ) (61)

Defining u, Vv, and w as the components, the inertial velocity

along the eXG’ eYG’ eZG directions, respectively.
u = ro
v = r(e + QP) cos @
w=-=7x (62)

Equations (6l1) can now be written in matrix form as

u Fyg uw - vZ tan
[ ) —_ 1 l
- YG T |uv tan @ + vw
w Foq -(u? + v?) (63)

Equations (63) are the dynamic equations of translational mo-
tion that yield the inertial velocity vector time history. The

i F F de~
external accelerations, Xq/;, FYG/;’ and ZG/;’ must be de

described in terms of their gravitational, aerodynamic and
propulsive components,

The kinematic equations that yield the position of the vehicle
can be obtained from equations (62) as follows:
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h=r=~w
¢ = u/r
b = v/(x cos @) = QP (64)

The variables u, v, w, h, ¢, and © define the trans-
lational velocity and position of the vehicle and constitute six
of the state variables in the STEP models,

C. Rotational Equations of Motion

Normally six equations are required to characterize the rota-
tional motion of a vehicle -- three kinematic equations that yield
the angular orientation and three dynamic equations that yield the
angular velocity. Like the dynamic equations of translation that
balance the external forces, equations (63), the dynamic equations
of rotation balance and external torques, The external torques on
an entry vehicle arise from the primary propulsion system, attitude
control jets, aerodynamic control devices, as well as internal ro-
tating equipment. Precise modeling of these torques for unsymmet-
trical, guided vehicles is very complex, especially in a filtering
application where a state transition matrix is required. There-
fore, STEP omits the dynamic equations of rotation and instead uses
the inertial angular rate measurements P, Q, and R from air-
borne gyros,

The kinematic equations of rotation are formulated using a
four-parameter system of quaternions (refs. 18 thru 20). This
formulation eliminates the singularities associated with Euler
angles, yet does not require the additional computation associated
with the nine direction cosines., Because quaternions have not been
in common use, a detailed development is presented herein.

The quaternion is a four-parameter quantity commonly written
q=eg+ei+ejt egk (65)

where e;, e;, e,, and ej are real numbers, and i, j, and
k obey the following rules:

i2

ki = -ik = j (66)

I
.

ij = =ji = k  jk = -kj

.\ B \\\



The conjugate of the quaternion q, denoted q¥* 1is
q* = eg - e;1 = e,j - egk (67)
The quantity e; 1is called the real or scalar part of the quater~

nion; eji + ezj + ezk d1s called the imaginary or vector part.
The length or norm of a quaternion is defined to be

L
liall =\,qq* = \/e% + ef + e% + e% (68)
If the quaternion q has a norm of unity, ||q] = 1, it is called

a versor,

Let V be a vector having components u, v, Ww. It can be
written

V=nul +vj + wk (69)

Forming the product V” = q*V ¢, where ¢q 1is a versor yields

v (eg - e1i - epj - ezk)(ui + vi + wk)(eg + e1i + enj + e3k)

[(e] + ef - e - e3) u + 2(e1ez + ege3) v + 2(eres - egex)wli
+ [2(ejer - e0e3) u + (e% - e% + e%_e%) v+ 2 (ege; + e2e3)w]j (70)

+ [2(e1e3 + eoez) u+ 2 (eyeq - eoel) v + (e% - e% - e% + e%)w]k

This is simply the vector transformation

(e% + e% - e% - e%) 2(e e, + eoe3) 2(eje3 ~ege,)

V® = GV with G = |2(eye, =~ e0e3)(e% - e% + e% - e%) Z(eoe1 + e2e3) (71)
2(ejeq + ege,) 2(eje3 - eoel)(e% - e% - e% + e%)

The quaternion may also be viewed in terms of an axis rotation
about a line. It can be shown that the orientation of one axis
system with respect to another axis system is uniquely determined
by a single rotation about a specific direction. The direction
vector S <can be specified by the three angles ¢, n, &, which
it makes with the axes of the reference frame, shown in figure 3.
Thus, we have four parameters that establish the orientation g,

n, &, and u,
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YG

Figure 3,- Axes Orientation

Instead of the commonly used sequence of Euler angles for mov-
ing the reference axis (G-frame) to the body axis (B~frame), the
procedure employing quaternion parameters can be visualized as
follows:

1) Rotate the G~frame, using an orthogonal matrix B of
direction cosines, to cause the e  axis to be aligned
with the direction §; x

2) Rotate around S through the angle 3

3) Rotate through an inverse matrix B~! until the axes
are aligned with the B-frame,

The direction S and the value of 1y must be selected to cause
the alignment.

e. s and e be unit vectors in the G-frame.
XG YG zG

Let ey eY, ez be unit vectors in an axes system having eX
aligned with S, eY lies in the e

Let

< = e plane and e, forms

a right-hand system. Because eX makes angles ¢, n, and §

with e e and e__, the transformation which rotates

e is

d into e e
anc e MO S Sy &y

e
XG?
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°x €xc
= 72
ey B [eys (72)
°z €76
where
b1l = cos bis = cos n b1z = cos & (73a)
are the elements of the matrix B.
The remaining elements of B can be determined because it is
required that eZG be perpendicular to eY, and the matrix B
be orthogonal and reduce to the identity matrix whem ¢ = 0,
n=2¢=a/2, Thus,
b21 = .. €08 n b22 = CO0S [ b23 = Q
sin £ sin §
by = - COS © bzg = - €95 N by, = sin & (73b)
31 sin ¢ 3 tan £ °°
The second rotation through u about ey can be represented by
the matrix
ey ey 1 0 0
ey’ |- m|ey vhere M = 0 cos psiny )
e, ey O - sin u cos y
The final rotation from the ex’, eY', and eZ’ axes to the B-
frame is
e e -
XB X
e = g1 e ”
ve| = B Y (75)
e e_-
ZB Z

The transformation from the G-frame to the B-~frame is the product
of the three transformations above or
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e e

XB XG

. -1
eYB = G eve with G = B" MB (76)
®/8 €26

where G has the elements

|

g1 =1-2 sin? g'sinz z

= iq2 1 -E

815 2(Sln %-cos z cos n + sin %-cos 5 cos g)
= 2(sin? L - sin & Y

813 (s1n 5 cos L cos § sin 5 cos % cos n)

o = ’2.}-1- - i -E -E

801 2(81n > €Os ¢ cos n - sin % cos 5 cos E)

8y = 1 - 2 sin? };l-sin2 n (77)
= 2 (sin? & cos n cos £ + sin £ cos & cos

g23 (sn 5 n € > 2 c)

qq = inl2 H iy B B

231 2(31n 5 cos 7 cos & + sin 2 cos 5 cos n)
= 2 Y - gin & H

832 Z(Sin 5 cos n cos & sin ) cos 5 cos C)

g33 = 1 - 2 sin? -%-sin2 g

To simplify equations (76) and (77), we make the following sub-
stitutions

ey = cos-%, e; = cos [ sin %3 e, = cos 1 sin-%, ey = cos £ sin %- (78)

Thus, the G-matrix becomes
(e% + e% - e% - e%) 2(eje,+ ege3) 2(ere3 - ege2)
G =]2(e,e, - ejyey) (e% - e% + e% - e%) 2(ege; + eyej) (79)
2(eje3 + epe,) 2(e,e3 = egeq) (e% - e% - e% + e%)

which is identical to the transformation matrix in equation (71),
The four quantities eg, e;, ep, and e3 are called Euler
parameters, and, from their definition, equation (78), they must
satisfy the normality property



1

2 2 2 2 =
ef tef tes+es =1 (80).
Hence, they are not independent,
Because the transformation matrix G can he composed of three

orthogonal Euler angle transformations, it also is orthogonal,
Therefore,

¢l =¢" (81)
and

- - ey
e e
XG XB

T
= G 2

®ve °yB (82
®za | A

We have seen that under static conditions the G~frame compo-
nents can be transformed to the B-frame via the transformation
matrix G in equation (76), which is a function of the Euler
parameters eg, €, e2; and e3. These Euler parameters con=
stitute the real numbers in the quaternion g, equation (657.
Equations (78) relate the Euler parameters to angles g, n, &,
and 1u.

Next consider the B-frame rotating with respect to the G=frame
so that at any time t the orientation is given by ¢, un, &,
and u through the quaternion

q = cos %.+ (cos z sin.%)i + (cos n sin %)j + (cos £ sin %)k (83)

At a later time t + At the B-frame can be related to either the
G-frame or the B-frame at a time t. We choose the latter and
orient the B-frame at time t + At (B“-frame) to the B-frame at
time t through the quaternion

Qe =.COS %E-+ (cos z” sin %ﬂ)i

+ (cos n’ sin %E-)] + (cos £” sin ‘%‘E‘)k (84)
where 7, n°, and &~ are angles specifying the direction vec-
tor S° with respect to the B-frame axes at time t, Ap is the

magnitude of the rotation about §°, The quaternion q. can be
written
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- g gei+ 04 + o
qe = (cos &+ 0si+ 00 +0 k)
Au

+ sin 3= [0 + (cos 7)1 + (cos n”)j + (cos £7)k]

2

For Au small sin %E-; %E and cos &% = 1. Therefore,

2

e = L + €

where
A

€ = EH‘[O + (cos 7)1 + (cos n7)j + (cos £7)k]

Because this rotation occurs between time t and t + At,

we can

write the quaternion relating the B”-frame to the G-frame as the
product of q¢ (relating the B"=frame to the B-frame), and q(t)

(relating the B=frame to the G-frame)
q(t + At) = q(t) q¢ = a(e)(1 + €)

The time rate of change of q(t) is defined to be

_ lim  q(t + At) - q(t)
At-»o At

q ()

Therefore,

q(t) =dm_q¢) £ = .;- q(t) 1 [cos £)i + (cos n”)j + (cos £”)k]

At>0 At

But the components of the angular rotation vector in the B-frame

axes are

w_ = W cos ¢~ w. = u cos n” Ww_ =y cos &7

X Y Z
which, when substituted into equation (90), yields
. 1 . .
t) == + + w_k
q(t) > q(t) el +owy] wzk]
Differentiating q(t) in equation (65) yields

&(t) = éo + éli + ézj + é3k

Equating compomnents in equations (92) and (93) gives

(85)

(86)

(87)

(88)

(89)

(90)

(91)

(92)

€93)



- 1 (
= e e ]
eq ) ey e + es UJY + es3 wz)
- l
ey = o= w_ + w - )
1 7 (eo vy + 2 2 7 e %) )
e, = .l. w_ o= w4 w
e,y 5 (eo v ep ¥, ey 'X)
. 1
= - w -
€3 7 (e0 7 + e wY e, @X)
which can be solved for wx, wY, and wZ
wy = 2[-e @3 + e3é; + egé; = e;8(]
vy = 2[+e &5 - eje; + ege, - e,€,] (95)

w, = 2[-e,e, + ese; - ejeq + eqe;]

Thus knowing the four parameters, eg, €3, ez, and e3, and
their rates, the components of the rotation vector can be deter~
mined.

In STEP, we assume that the angular rotation rate vector QB'
between the B—frame and I-frame is known. We desire to determine
the attitude of the vehicle with respect to the G-frame. The ro-

tation vector of the B-frame with respect to the Geframe, QBG’

is the difference between QB and QG’ the later being the

angular rotation vector of the G-~frame with respect to the I~frame.

Q = -
BG QB QG (26)

The inertial angular rates P, Q, and R are components of &

From figure 2, we see that B

Q=......V___e —E
G (r cos @) YA (r) eYG ©7)
where
eZI = (cos ®) eXG - (sin Q) eZG _ (58)
Therefore,
= (X -8 _ v 3
% (r) X6 (r) Y6 (r cos @ )S“n ? %z o
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Using matrix notation we can write equation (96) as followst

-
P ¥
T
= e = (100)
e = |26 |- T
v
R _f T cos sin o
where G is the transformation matrix relating the B~frame to the
G-frame and given in equation (79). Note that the components of
QBG are wx, wY, and wz required in equation (94). Substi-
tuting equation (100) into (94) yields
S . » T 7 r 11
e -, = e, - ¢
0 1 2 3
P z
& eg - €5 e ;
1 1 0 3 2 u >
=L -c |- Xt 101
s > . Q - (101)
e e, -
2 3 0 1 R -y tan
. r
e - e e e
| €3] L= %2 e ol (L] ; 4

which constitutes a system of first-order, nonlinear differential
equations for the Euler parameters as functions of the inertial
angular rates, inertial velocity components and vehicle positions.

Because of the dependency existing in the Euler parameters, as
a result of the normality equation, equation (80), only three of
the scalar equations in equation (101) can be recursively updated
by equation (53a). In Section IV.H, this dependency and the way
the STEP accommodates it will be discussed in more detail,

D. External Accelerations

In equation (63), the external accelerations acting on the ve-
hicle were required. The accelerations normally arise from three
sources =-- gravity, aerodynamics, and propulsion -- which will be
described next.

1. Gravitational accelerations.- The gravitational potential
including up to second harmonic terms is from reference 21.




R R_\3
GM|E E|] 1
U3, ';'-Jz(;—) 20 sinch-l}
where

G = universal gravitational constant

M

mass of the planet

RE equatorial radius

The gravitational potential may be used to obtain the gravita-
tional force per unit mass by means of the gradient operator

F :
Gravity _ _ grad U

m

In spherical polar coordinates the gradient operator is

] 1 ) 19
grad( ) = - 37( ) €26 T T cos © 53{ ) ey T T 35( ) exe

which yields

B 7]
FXG/H - %%-sin 20
FYG/ﬁ - 0
F‘ZG/m Gravity %2—-5% -3 os cp)_‘
where
u = GM
3= % 3 R2

2, Aerodynamic and Propulsive Accelerations.- It is in the
characterization of the aerodynamic and propulsive accelerations
that the STEPl and STEP2 model formulations differ. STEP2 uses
airborne accelerometer measurements that include all external ac-
celerations of a propulsive or aerodynamic nature. These meas=-
urements are first transformed from the sensor location to the
center of gravity by the following transformation:

(102)

(103)

(104)

(105)

(106)
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T . . 1
- - (@ +R?%) (PQ - R) (BR+Q) | |%p
a =|a - + R) = 2 2 - ¥ ,
sl = |3gp| = [®Q+ R - B2+ R (R -P) |7, (107)
a a R - G R+ D) - P2 + q2)| |z |
| %] |@R-Q @R+R - @2+ Q2|7
The accelerations acting through the center of gravity are then
transformed to the G-frame via the transformation equation
. -
XG/m °xB
T
F =G 108
Y6/m ®yB (108)
E
7G/m A
— L .
where G 1is given by equation (79).
In the STEP1l formulation, no propulsive terms are included,
and the aerodynamic terms are expressed in the B-frame. The B-
frame components are transformed to the G-frame as follows
Fxe/m Fys
_ AT 1
Fyo/m| =6 % |Fyn (109)
Fo6/m Fzp
The aerodynamic force coefficients can be expressed in terms of
the 1lift, drag, and sideforce coefficients CL’ CD, and CY
(see fig. 4) where C, and G, are directed normal to, and along
the velocity projection in the eXB - €, plane, CY produces a
sideforce, Y, acting in the direction of eYB' The 1ift, drag,
and sideforce are transformed to the B-frame as follows:
F cos o 0 = sin o= C
XB
F = qS 0 1 0 C 110
- q - (110)
F sin a Q cos all- C
i ZB L

where o is the angle of attack, ¢q the dynamic pressure, and
S the reference area.
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Figure 4,-

Vehicle Attitude Angles

The aerodynamic coefficients can also be expressed in terms
of the axial force, normal force, and sideforce, CA‘ CN' and

i - and
CY. CA and CN produce forces that act in the esB n

directions, CY

“€78

produces a force acting along e__, The trans—

YB
formation to the B-=frame is

Fyg - C4
FYB = qgS CY
Fzn - CBL

The aerodynamic coefficients are sometimes expressed in the
plane and normal to the plane containing ey and the velocity

vector (see fig. 4). The axial coefficient, C

A is directed

XB axis; the normal coefficient CN

Ul

along the -e is directed

(111)
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XB axis in the eXB

Yn’ directed normal to the exp
normal to the exp " VA plane, This characterization transforms

normal to the e - VA plane; and the side-

force coefficient, C axis and

to the B-frame as follows:

- N
FXB 1 0 0 CA
FYB =qS |0 cos £ sin ¢ CYn (112)
FZB 0 - sin £ cos &| |- CN

B nJ

The dynamic pressure, q, is

q= %-p Vi (113)

where p 1is the atmospheric density, and VA is the velocity of
the vehicle relative to the atmosphere, VA can be calculated from

u, v, and w after atmospheric winds are vectorially added. Let
U be the wind component from the north and v, the component

from the east, then the components of the velocity vector relative

to the atmosphere are

thus,

\'
A

The aerodynamic coefficients depend on the steering angles
By or n, &. These angles can be calculated from the components
of V in the B=frame which are obtained by transforming

A
as follows:

50

u-+u
W

V - rQP cos ¢ + VW

w

2+ 2+2
Ua T VATV

Ug Ya
vB =G vA
Vg YA

(114)

(115)

aie)
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The steering angles can then be seen from figure 4 to be
w u

sin o = B s cos o = -—Z—-L-?-
2 2
"uB + wa "uB + w3
u?l w2
v
sin B = _E cos B = .—B-—-':——B-
\Y \'
A A
2 2
. N'B + ¥B ug
sln n = —'——V——- cos n = T]—-
A A
v w.
sin § = B cos g = B
2 2 2 2
ve o+
WB VB + wB

The transformation matrix G in equation (116) relates com-—
ponents in the B=frame to components in the G-frame and is a func-
tion of the body attitude (orientation) given in equation (79).

E. Atmosphere Model

The equations solved in determining atmospheric properties are
developed in references 22 and 23. For completeness they are re-
peated below, It is assumed that the defining characteristic of

the atmosphere consists of a molecular scale temperature, T

versus geopotential altitude H,
geometric altitude, ho’ or a

combination of both H and h .
o

This T versus H or h de=-
M o

o pendence consists of a series of
' straight-line (constant gradient)
segments as shown in figure 5.
The geopotential altitude can be
calculated as a function of the
geometric altitude from the fol-
q lowing equation (ref. 22).

CaLED 4 P AV 4V 4V 4V 4

Ty

Figure 5.- Molecular Scale Temperature
Altitude Profile

(117)

(118)

(119)

(120)

(121)
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where R, is the average Earth radius at a latitude of 45° 33'

/
32", This equation, although approximate, is good to within 14
ft at an altitude of 1.0 x 10° ft,

The corner points connecting the straight-line segments are
referred to as base altitudes, base temperatures, etc. From a
table of base altitudes, base temperatures, and the slope dTM dH

within the linear segments (LM)’ temperature can be calculated
at any desired altitude from the following equation:

T = + 1= 122
M TMB . LM . (} HB . ) ( )
1 1 i

Values of T and LM versus HB and 2Z are presented in

My i i B,

i
tables 1 and 2 for the 1962 U. S. Standard and 1959 ARDC atmos-
pheres, respectively, The atmospheric pressure is determined as

follows: (é M )//
(o] Q
R* LM

i

P = Py for segments with LM £ 0 (123a)

i
H-H
8q Mo ( Bi)-l
P=7p exp|- R% T for segments with L =0 (123b)
i
where Py is base pressures corresponding to the base altitudes.
i

These base pressures can be calculated once the sea level pres-
sure, po, and the temperature profile has been specified, Hav-

ing calculated the temperature and pressure, the density, p,
speed of sound, Cos and atmospheric viscosity, Hps are de-

termined as follows,
(MO)
p ==z (124)
R* TM
1l 1
- [aR¥\2 5 2
cg (Mo M (125)



TABLE l.- 1959 ARDC ATMOSPHERE
TEMPERATURE PROFILE

H, m Ty °K Ly °K/m
0 288.16 -0.0065
11 000 216.66 0.0000
25 000 216.66 0.0030
47 000 282,66 0.0000
53 000 282,66 -0.0045
79 000 165.66 0.0000
90 000 165.66 0.0040
105 000 225,66 0.0200
160 000 1325.66 0.0100
170 000 1425.66 0.0050
200 000 1575.66 0.0035
700 000 3325,66
TABLE 2.- 1962 U.S., STANDARD ATMOS~
PHERE TEMPERATURE PROFILE
h, m Hy, m T, °K L, °K/m
0 288.15 -0.0065
11 000 216,65 0.0000
20 000 216.65 0.0010
32 000 228,65 0.0028
47 000 270,65 0.0000
52 000 270.65 | =-0.0020
61 000 252,65 | ~0.0040
79 000 180.65 0.0000
90 000 88 743 180,65 0.0030
100 000 210.65 0.0050
110 000 260.65 0.0100
120 000 360,65 0.0200
150 000 960.65 0.0150
160 000 1110.65 0.0100
170 000 1210.65 0,0070
190 000 1350.65 0.0050
230 000 1550,65 0,0040
300 000 1830.65 0.0033
400 000 2160.65 0.0026
500 000 2420.65 0.0017
600 000 2590.65 0.0011
700 000 2700.65
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3

2
= BTM -
"\ Ty + S

(126)

where g is an acceleration of gravity at sea level, Mo is the

molecular weight of air at sea level, R* is the gas constant, Y
is the ratio of specific heats, and B and S are Sutherland's
constants, There are slight differences between the values of
these constants in references 22 and 23. Te maintain consistency
in STEP, the following values from reference 23 are used:

M = 28.9644

e}

R% = 8,31432 x 103 —grmceo

(°K) (kg-mol)
vy = 1.40
8 = 1.458 x 1076 —-——Jﬁiuamﬁf
sec m (°K)%
S = 110,4 °K = 198,72 °R
8, = 9.80665 m/sec® = 32,1741 ft/sec®

In the 1959 ARDC and 1962 U. S. Standard atmospheres, the
molecular weight varies with altitude above approximately 90 km.
In STEP atmosphere, the molecular weight is assumed constant re-
sulting in a slight discrepancy above 90 km. In the 1962 U. S.
Standard atmosphere, geometric altitude is used above 90 km. In
STEP, the geometric altitude is transformed to geopotential alti-
tude, which is used throughout. Thus, above 90 km, a constant
slope of molecular scale temperature versus geopotential altitude
is used instead of the constant slope of temperature versus geo-
metric altitude. Nevertheless, the 1959 ARDC and 1962 U. S.
Standard atmospheres used in STEP agree remarkably well with those
published in references 22 and 23 and shown in table 3.

F. STEPl and STEP2 Dynamic Models

The dynamic models in the STEPl and STEP2 programs can now be
summarized. The translational and rotational equations of motion
are obtained from equations (63), (64), (101), and (105) and are
as follows:




TABLE 3,- ATMOSPHERE ACCURACY COMPARISON

1959 ARDC
Reference 22 STEP1
ho’ H, P, Pr H, Py P

m m nt/m2 kg/m3 m nt/m2 kg/m3

0 0 1.0132545 1.2250+0 0 1.01325+5 1.224940

10 000 9 984 2.6500+4 4.1351-1 9 984 2.65009+4 4.1351-1
20 000 19 937 5.5293+3 8.8909-2 19 937 5.52968+3 8.8912-2
30 000 29 859 1.1855+3 1.7861-2 29 860 1.18561+3 1.7862-2
40 000 39 750 2.9977+2 4.0028-3 39 751 2.99797+2 4.0028-3
50 000 49 610 8.7858+1 1.0829-3 49 612 8.78625+1 1.0829-3
60 000 59 439 2.5657+1 3.5235-4 59 442 2.56561+1 3.5234-4
70 000 69 238 6.0209+0 1.0008-4 69 242 6.019261+0 1.0006-4
80 900 79 006 1.00840 2.120-5 79 011 1.007640 2.1189-5
90 000 88 743 1.353-1 2.846-6 88 751 1.3521-1 2.8434-6
100 000 98 451 2.138-2 3.734~7 98 460 2.1363-2 3.7304-7
150 000 | 146 542 5.334-4 1.759-9 146 562 5.3356-4 1.7587-9
200 OOOJ 193 899 1.629-4 3.673~-10 193 934 1.6294-4 3.6732-10

1962 U. S. standard
o Reference 23 - STEP1
ho’ H’ P, P H, P, Py

m m nt/m® kg/m3 m nt/m2 kg/m3

0 0] 1.0132545 1.2250+0 0 1.013251+5} 1.2250+0

10 000 9 984 2.64999+4 4,1351-1 9 984.4 2.64995+4 4.1350-1
20 000 19 937 5.52930+3 8.8910-2 19 937.6 5.52899+3 8.8905-2
30 000 29 859 1.19703+3 1.8410-2 29 859.9 1.19688+3 1.8407-2
40 000 39 750 2.87143+2 3.9957-3 39 751.3 2.87087+2 3.9948-3
50 000 49 610 7.97790+1 1.0269-3 49 612.0 7.97564+1 1.0265-3
60 000 59 439 2.24606+1 3.0592-4 59 442.2 2.24509+1 3.0579-4
70 000 69 237 5.52047+0 8.7535-5 69 241.9 5.51666+0 8.7482-5
80 000 79 006 1.0366540 1.999-5 79 011.4 1.03547+H0 1.9968-5
90 000 88 743 1.6438-1 3.170-6 88 750.8 1.64149-1 3.1650-6
100 000 98 451 3.0075-2 4.974-7 98 460.1 3.00326-2 4.9656-7
150 000 146 541 5.0617-4 1.836-9 146 561.7 5.06511-4 | '1.8362-9
200 000 193 898 1.3339-4 3.318-10 193 933.9 1.33465-4 3.3185-10
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. ) - 2 ] .
u aya uw ve tan @ AuOBL
. 1
= + -
v ave - uv tan ¢ + vw + 0
w a - (u? +v?y 4 y/x Aw
2G N OBL
h -w
o{={u/r
8 v/r cos o - Qp
Fé- F— e - e, - e-.1 [ - e, — e, - e-
0 1 2 3 1 2 3
. P v
e 1 e, — e, e, . 1 €q e; — e,
= = - - u
: 2 - 2r |
e, e, N e, eg e e,
. R - Vv tan ¢
e, - e, e e, e, - e, eq
where
AuOBL ~ l#; sin 2¢
Aw r ~ 3 cos? o+ 2
OBL
and

The accelerations in the G-frame are obtained from accelerations

R. +h

in the B-frame as shown in equation (108)

where the transformation matrix

G

is from equation (79)

(127)

(128)

(129)

(130)

(131)

(132)



(e% + e% - e% - e%) 2(e e, + ege;) 2(e;e3 = egey)

[G] = |2(eje, ~ eqej) (e% - e% + e%e e%l ZCeQel + e e, (133)
- 2 a2 a2 2
2(e1e3 + eoezz 2(_e?_e3 eoel) (eo ] e, + e3)

The manner in which the body oriented accelerations are calculated
in STEP2 and STEP2 differ and will, therefore, be presented sep-
arately.

1. STEPl.~ The accelerations acting through the center of
gravity are synthesized from the aerodynamic force coefficient,
dynamic pressure and mass as described in equations (108) thru
(112).
( = Cy (04 B,M)
Cy (@,8,M) (134a)
L" CN (0, B,M)

Féos o 0 ~sinoal|l= Cp Cors ByM) ]

aXB
ay =ﬁ~s-< 0 1 0 Cy (ay8,M) (134b)
a,. -sin a O cos OL__L- Cy, (a,B,MZ-J
[ 1 0 o |- Cy (n,£.M)]
0 cos & sin £ CYn (ny&,M) (134c)
0 - sin £ cos E_L— CNn (n,E.M)J

-

It is an easy task to modify the program to include Reynolds number
and flap deflection dependence of the aerodynamic coefficients,

The flap deflections, however, must be obtained from airborne
sensors.

The steering function o, B, n, and £ are obtained from
equations (117) thru (120) to be

sin a = — B cos o = ———EB——— (135)

2 2 2
ug + wp ‘,uB + Wﬁ
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v 2 2
. B u w .
sin B = 5 cos g = V-2 _F B (136)
A Va
2 2
_Y'E +¥8 Up
sin n = T cos N = T (137)
A A
B
sin £ = VB cos § = ——mnm—— (138)
Vg + vy Vo6 + 3
where
u u
B A
v =G 1
B VA (139)
W W
B A
with
=u+ h
ap Tt oy ()
V), =V = 1y cos 9 + Vi (h ) (140)
W, =w
and
- [2 2 2 = oa)i2 2 2
v, JuA + vy +owy JUB +vg +owg (141)
The dynamic pressure and Mach number are
=1 2
Q=50 Vi (142)
\Y
_ A
M= = (143)
s

The density, p, speed of souud, Cor and atmospheric winds

are functions of the altitude above an oblate planet ho’ which is

hO = h + RE - Ro (144)
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where the oblate planet radius is

//1+ —— - 1{ sin? ¢ (145)

2. STEP2,- In STEP2, the body oriented accelerations acting
through the center of gravity are calculated from the airborne
accelerometer measurements via equation (107)

- (Q2 + R2) (PQ -~ R) ( PR + Q|| =xp

axn ayp
agg | = [ayp |- [(PQ+ R «(®% +R2) (@R - ) ||vp (146)
a,; a,p (PR - Q) (QR + P) «(P2 + @2) || 2p

G. STEP1 and STEP2 Error Models

Within the equation of motion are many variables that are sub=-
ject to systematic error. These errors result from the quantities
being measured (e.g., inertial angular rates and accelerations) or
not being known or modeled precisely (e.g., atmospheric density,
winds, mass, aerodynamic coefficients). To account for these sys-
tematic errors, the following error models are included in STEP.
The coefficients, Ci’ can either be specified with absolute

certainty, estimated along with the state variables, or an uncer-
tainty assigned to them to degrade the covariance matrix of state
errors.
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The model for correcting the a priorl aerodynamic coefficients
in STEP1 is

- . - C N
) A rEDM ¢, o]
CY CYM Cs B
C c C: a
L 6

|- =Y R

a r - ol —
FCA cAM c, c, o? C7 Cio

1
CY P=< CYM f'*' C, + < Cs B >+ Cg (M+1)2 +|C11 M.618 (a7
CN CN Cy Ceg @ Cq Ci2 \,Re
L MJ L -
- - - - 5
CA EA‘M C,_‘_ n
CYn CYn Cs &
M
CNn CN CG n
L)L ™) QU
A priori Bias Steering Mach Viscous
aero angle number correction
coefficients correction correction

where the Reynold's number Re is

p V.4
R = —2

e ™ (148)

The a priori mass time history my used in STEP1l can be corrected

by a second degree polynomial in time between times t; and t,
as follows:

m(t) = my(t) for t < 1)

my(t) = (Cpg + Cyg1 + Cg1%) for t; <t <t (149)

= mM(t) - (C1g + C17Typ + C181§) for t, < t



where

T=¢t-t] and 12 = tp - t) (150)

This model permits the inclusion of a blas by estimating Cig
alone (C17 and C1g specified zero with absolute certainty),
Care must be exercised in specifying the error coefficients to
be estimated across t; because the coefficlent C1g permits
a discontinuity in the mass time history at tj.

The error model on atmospheric density in STEP1l is

= C23ho
p = Cyy pM(ho) + C,, e (151)
where pM(hO) can be specified as an ARDC 1959 or U.S. Standard
1962 atmosphere, Other atmospheres can be included for pM<ho)
by specifying their temperature, altitude profile, and sea level
pressure.
The error model on atmospheric winds in STEPl is
Uy = uWM(ho) + C2s
(152)
Vo = VM (ho) + Co7
where u and v are a priori specified wind altitude pro-
. WM WM
files.
The error model on the center of gravity to accelerometer dis-
tances xp, yp, zp used to transform the accelerations to and
from the center of gravity is
XP XPM(t) C31
Yy 1 =1y, ()] T 1cy, (153)
P Py
Z Z (t) C33
P Py
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The error model for inertial angular rates used in STEP1l and
STEP2 is

P C36 C37 C3g| |Py Cus Cug Cs1 Csu Cs7| [34p
Q1= 1C39 Cuo Cur] |Qq|* [Cue| * |Cuo Cs2 Cs5 O | [agp (154)
R Cuz Cuz Cun| Ry Cy7 Cso Cs3 Cse 0 | ]a,p

a

P |

where
2a a
5 = XP “ZP (155)
P a 24+ a 2
XP ZP
The anisoelastic correction assumes the lateral acceleration aYB
small,
"The angular accelerations P, Q, and R in equation (146)
are obtained by differentiating equation (154) and (155) yielding
- - _ o - - - 9
P C36 C37 Cagf [Py Cug Cs1 Csu Csqf [3gp
Q1= %39 Cug Cur] [Q} * [Cuo Cs2 Css O |ayp (156)
R Cus Con Cuul R Cen Cen Coe 0] la
B AR Y 50 ~53 V56 U | P
a.
-P-
where
Il ~{a a (? a,., + a,, a )
By = ap| R+ B LXEXP 22 “zz (157)
zP  2xp ayp” t 3zp

The time rate of the measured inertial angular rates PM’ QM'

and ﬁM are calculated by numerically differencing the discrete

input data points.,



In STEPl, the accelerations at the center of gravity are cal-
culated from the aerodynamic forces acting on the vehicle. These
accelerations must be transformed to the inertial measuring unit

(gyros) to provide the accelerations in equation (155). The trans-
formation is

. i ) . A0 T
a s an - (Q2 + R2) (PQ - R) (PR + Q) xp
- [ _ 2 2 - L]
8up agp| (PQ + R) (P< + R°) (QR - P) yp (158)
_ . . - 2 2
baZPd aZB_ -(PR Q) (QR + P) (P2 + Q i -zp_

As evident in equations (154), the accelerations must be known to
calculate the inertial angular rates, However, in equation (158)
the inertial angular rates must be known to calculate the accel-

erations. Thus, an iteration loop around equations (154) and

(158) is necessary in STEPL, The acceleration rates in equation
(156) follow,

The error model for the accelerations in STEP2 is

ayp Co1 Co2 Cos3| |24y C70
agpl = [Ceu Ce5 Ces| |2gpy| + |C71 (159)
3o Ce7 Ces Ceof |2,y Cy2

The time rate of change of acceleration required in equation (156)
and (157) is obtained by differentiating equation (159) yielding

ayp Ce1 Ce2 Ce3f|apy,
ayp| = |Ceu Ces Cos||ayy (160)
a,p Ce7 Ce8 Coa||dyy

The time rate of the measured acceleration A&yxy, &yy, and &gy

are obtained by numerically differencing the discrete input
data points,

Note that many of the Ci's for i between 1 and 75 are un~

used in the error models. This was done to provide coefficients

for future addition of terms to the error models for specific ap-~
plications.,
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H. STEP State Variable Dependency

The dynamical model used in STEP contains 10 nonlinear ordinary
differential equations, equation (127) thru (129). However, only
nine of these equations are independent, a requirement on the dy-
namical system used in the filter equations, equatioms (53). The
dependency arises in the four-parameter system of Euler parameters,
equations (129), that describe the vehicle attitude. The Euler
parameters must satisfy the normality comstraint, equation (80).
Therefore, one Euler parameter can be calculated from the remain-~
ing three by means of equatiomns (80)

e, =‘/l - (e% + e% + e3) (161)

However, its sign cannot be determined because the constraining
equation involves squares of the Euler parameters, Taking differ=
entials of equation (1l61l) yields

se3 = = 2= [0 se0 + o) sey + e, G'e?_] (162)

which shows that the sign and magnitude of a pertuyrbation in e,
can be determined from perturbations in the other Euler parameters.
Thus, STEP includes only nine of the state variables, u, v, w,
h, ¢, 6, eo, e;, and e, in the recursive filtering described

by equations (53). The correction in es is calculated by equation
(162) from the minimum variance corrections calculated for e ,
o

e1, and ep in equation (53a). Because the state transition
matrix does reflect the normality constraint, all 10 state vari-
ables are propagated between measurements and a 1l0=-component state
vector is maintained in the covariance and correlation matrices P,
C,z» and C . In equations (53b) thru (53d), for updating and

correlation matrices, the tenth rows (and tenth column for P be~
cause of symmetry) are calculated from the following equations:

P].O,i = NP~

- np-NT
Plo,10 = NN (163)
C =N C”
va vz
CVZ =NC vz



\&ﬁ

where P°, C° , and C~ are the 9x9, 9xq, anc¢ 9xr sub-
vz vz

matrices that reflect only the nine component states that were up-
dated via equations (53). The transformation N is the 9x1
matrix containing elements that are partial derivatives of ej,

in equation (161), with respect to the nine state vector compo-
nents

-2n =€ -
vM=loooooo—2—2—-2%
ea 93 E3

(164)
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V. LINEARIZED EQUATIONS OF MOTION

The equations of motion and error models described in Sections
IV.F and IV.G constitute the dynamic system described by equation
(41). The state variables X are u, v, w, h, ¢, 8, e €,
e,, and e3. The model parameters W and U are composed of

the error coefficients C,, which are governed by differential

equations that state that Ci =0, 1i.e., the error coefficients

are constant. The user can specify whether the error coefficients
are in W (to be estimated), in U (uncertain but not estimated),
or are known with absolute certainty. Because all coefficients

can potentially be in Z or U, 1it,is necessary that partial
derivatives of the state variables X with respect to state vari-
ables and error coefficients be known to form the linear differ-
ential equations to be integrated to obtain the transition matrices
® and 6 in equation (50). These linear differential equations
can be written as follows:

- r - r -
5&7 3u/du  au/dv d4/ow . . . ail/ae3 a{;/aci . .. ail/acj Su
&v 3v/3u .. sv
&w aw/du e e . Sw
sh oh/ou ... sh
5o 30/ 3u .. 8¢
§6 |=156/5u . e Y
se 3é_/su ... Se
se, 3e;/du . . . Sey
Gez aez/au . e 6e2
LSe% _ae3/au . e e 1 Segq
8¢,
sC
el

The partial derivatives of the state variagbles rates u, v,
w, h, ... e, with respect to the state variables are obtained
by differentiating the equations of motion, equations (127) thru
(129). These partial derivatives for STEP1l and STEP2 follow,
STEP2 being presented first because it is simpler.



A. STEP2 Linear Equation Coefficients

The coefficients of the linear equations of motion for STEP2
consisting of the partial derivative of the equations of motion
with respect to state variables are presented in table 4.

[ ] L ] 2 _
BAuobl/eh aAYobl/ah I 4 si: 20 _ 4(3 cosr P - 2)
Bhu 1 /3% Bhw 4 /3P g (166)

2 cos 20 - 6 cos ® sin @

The partial derivative of the equations of motion with respect
to error coefficients are

213 I 2 xe (167)
M = a
aci LWA aci vB
478
2] o
2 {el=1o (168)
aCc. | .
1]9] 0
o ] _ _ o
e, e, e, e, P
3 e1 _1 eO —e3 e2 5 Q (169)
3c; e, 2 e, ey e 3C; | R
€3 | [7%2 ©1 %o |
For the center of gravity parameters Cj,, Cj,, and Cg,
) 5C 3 3C 3 5C -(Q% + R? PQ + R _ ¢
ap/?Cs ayp/PCs 22,5/°C) (@ ) BQ+ R (R - Q)
= - + R -(P2 4+ R? R+ P 170
BaXB/aC32 8ayp/0Cs, 28,5/9C,, ®Q ) ( ) Q N S
5 _ 3 _(p2 2
aaXB/3C33 aaYB/ac33 aaZB/ac33 (PR + Q) (R - P) (P= + Q%)
and
P 0
2 Jql=]o0 (171)
3C,
t]r 0
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TABLE 4.~ COEFFICIENTS IN STEP2 LINEAR EQUATIONS OF MOTION (B)'{/aX)

NCX
X u v w h P 6
W 2v _tan ©® u (v2 tan @ - uw) aAuOBL v2 ‘.‘IOBL
& ¥ AL LR 4 a + - 0
r r r r oh T cos2 @ Xxp
v vitan @ | u tan @ + w v (vw + uv tan @) uv [
r T r |- r2 T cosZ @ 0
o |2 L2y o |2tV 2u Dopr | P 0
T r r2 "3 Sh 3
h 0 0 -1 0 0 0
1 u
¢ - 0 o|-% 0 0
9 0 1 0 — v v tan @ o
r cos @ r? cos ¢ r cos @
. ez e - eq tan @ 0 (-e;v + esu + eqv tan @) -eqv 0
€o T o2r 2r 2r2 2r cos2 ¢
. en ~en - €p tan @ (epVv - equ + epv tan @) -epv
€1 2r 2r 0 2r% 2r cosZ @ 0
. en e~ + e; tan @ (-eqVv - epu ~ €V tan Q) eLv
€2 2r 2t 0 2r2 2r cos2 @ 0
. ey ~ex t+ € tan @ 0 (epv + eju - eqv tan @) eqgv o
€3 [~ %r 2r 212 2r cos- @
ep ey eo eg

2(eo8yy - esfyp T €2ayp)

2(easyp * Codyp - C193)

2(-e2aXB + ejag, + eanB)

0
0
0
0
3(r-%)
7(e+3)

2(eaayp * eadyp * eadyy)

2(e2ax_B - erdyp -

Z(esaXB + epayp - elaZB)

Q

0

0
-3

0
Hfe- s
-3

03z5)

2(-e2aXB + e1ayy + eOaZB)

2(e3_ax]3 + ezayp + eaaZB)

2('e°aX.B + egayp - eEaZB)

2(-e:.,a}CB - eoayp + era,y)

Z(eoam3 - ezayy + ezaZB)

z(ej_ax_B + epayy + e3aZB)

INTE
=
+

v _tan 9)

1
N
—
O
]
Hle

o
—
o]
+

t<
~




For the inertial angular rate

axg
4yl = -
azp

3
3C,

where

BIE®
apfac,,
8p/3C4g
ap/ac,,
apfac,q
ap/ac,,
sp/acC,,
ap/ac,,
3/3Cy,
aP/3Cy5
3P/ 3C,¢
3P/, ,
ap[aC, 4
3p/3C, 4
sB/acy,
2B/aCs,
apfac,,
aP-/acsa
3p/3cs,
apfac,
3P/3C,
ap/ac,,
ap/aCgg
9B/aC 4
9p/aCq,

Qyp + Rz
X - 2P
Q P YP
(Rx - 2Pz
P p

P

3Q/8C36

paramete

rs,

.Pyp - 2pr)

Pxp + Rz
R -2
Yo 0

3R/3C3¢]

: g
z
p

p—

0

(=2
>
L]

o

Cz6s C37s
%PZP - inp
z - 2R
Qz, ’p

+ Px_ .
(Qyp > )
-2
p 7p
0 -X
P
X 0
P .
0 0 |
0 0
0 0
P, O
Ry O
0 Py
0 Q
0 Ry
0 0
1 0
0 1
0 0
ap O
0 axp
0 0
ayp O
0 yp
0 0
a,p 0
0 azp
0 0
0 0
0 0
0 0

R

2

BCi

d

aC,
i

- -

P

O

(172)

(173)
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[~ . - . _1 [~
3p/3C,.  3Q/3C,,  AR/3C g By O 0
ap(acs7 y O 0
3P /5C . R. 0 O
/ 38 Ry
ab/ac . 0 P 0
% R (174)
'aP/aCL*1 0 RM 0
aP/acLFZ 0 0 Py
3P /3Cy, 4 0 0 y
3P/3C,,, . .. 0 0 Ry
| _ | 1
For the acceleration parameters C61’ C62’ o o s C75
&yp ayp
d a = 9 a
sc, | Y?l oc, | ¥
a i a
ZP ZP
+ -2 Pz_ - 2Rx [P ]
(Qyp Rz, ) (Pyp pr) ( “p P) .
- - 2P Px + Rz z - 2R <
(QXP d ) ( P ) (Q P yP) acy
Rx_ - 2P Ry - 2 + P R
(B z ) (R Qz,) (v, + Px; ) I
0 -z P
p 7p T
a .
+ 0 -x_| = 1
Z5 ol 3c; Q (175)
- 0 R
p Tp | ]




where

@
[
- 'Y

@
(@]

M
I

TéaXP/acel dayp/9C,  dazp/aC, F;XM 0 0
8aXP/8C62 e . . Byy 0 0
BaXP/BCG3 e e e 8oy 0 0
aaXP/BCGH e . . 0 ayym 0
dayp/3Cq C. 0 ay O
aaXP/GC66 e . . 0 2y 0
BaXP/3C67 e e 0 0 Ay
BaXP/BC68 .« v . =0 0 ayy (176)
BaXP/8C69 . . 0 0 Ay
Baxp/3Cs, Ce 1 0 0
dayp/3C,, Ce o 1 o0
dayp/3C;, R o o 1
Bay,/3C,, Ce o 0 0
BaXP/BC7L+ . e 0 0 0
dayp/3C,s R o 0 0

P Cihg Cs1 Csy Csy EY

9 C C o C d
R Cs0 Cs3 Cs6 Csg ayp
| %P |
a oa
_ 1 XP XP
ap | |axp (aXP + azﬁz) 9Cy
azp dagzp
* Zl_ T oau.l 4+ 2 3C (178)
ZP XP azp i
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and

P Cug Cs; Csy Csy axp
] . 9 .
3c, Q {=]|C4 Csp Css O ac, ayp
R Cso Cs3 Cs6 O azp
S
[P
with
da__/aC da__/sC da__/a3C ] a 0 0
ayp/8Cq, Bayp/3Cc, 2a,/3C ) S
aaXP/aCGZ . . aYM 0 0
BaXP/BC63 e . e 2oy 0 0
Z)aXP/E)C61+ .« o . 0 ayy 0
BaXP/aC65 . . . 10 ayy 0
BaXP/BC66 . . 0 ayy 0
aaXP/BCG7 . . 0 0 ayy
BaXP/8068 . 0 0 aym
_BaXP/BC69 . . | \_O 0 aZM4
da ] da. da
P ZP
a%p z(aXP ol L G XP 3¢, )
2 axp” * azp °
. . da aaz]?
2 (axp agp * ayp aypl |3p 3C; + agp aC, )
- 3/2
(axp” + 2zp%)
_ da da, da da
XP 7P, - Xp |, - ZpP
a a —_ + —_ —_+ —_—
) P (xp acy azp ac; axp ac; 47p 3C; )

(axp2 + aZPz)

da

_ . 5
(axp %p T %zp azp) Eo

(axp2 + agp7)

+

. da da
. Xp ZP
2ap (aXP ap * agp azp) (aXP ac, + azp 5¢ )

i
2)2

* 2
(axp? + azp
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B. STEPl Linear Equation Coefficients

The partial derivatives of the STEP1l equations of motion with
respect to the 10 state variables are the same as those for STEP2
presented in table 4 with the addition of the terms in table 5.

The partial derivatives of aa? 8 and 2, are obtained
differentiating equations (132) yielding
axe axB axB
d =3 [g1T + T3 (182)
3t 1% 52'[ Magg| * [€] 3z | PeB
az¢ 478 azB

t=u, v, w, h, ¢, 0, €p, @15 €y, €3

Expanding terms in equation (182) yields the following nonvanish-
ing terms:

T &y €3 €] T e, e, €47
B[G] = 2 e e -2 a[G'] = 2 e -e —-e
|~€2 €1 €p | | €3 €p  ~€y ]
(183)
. 'lez ey eOT . _;e3 -e, elT
I IR PN e e 3[6l” = 2 |e - e
an 1 2 3 aea O e3 2
ayB a3 —Cy
9 - 123q 9S8 3
azp azB -Cx
oh EAY
29 ~qde o 429 _A (185)
ot  p dhg 3¢ V, 3z
—Cy ey Y € €
3l 1 -2+ 2 1c. 10,123 Jc, 3242 Jo. |28
or | Y v, Y | 3¢ ah Y z el Y loz  aBl Y | o¢ (186)
—CN —CN -CN —CN —CN
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TABLE 5.- COEFFICIENTS IN STEPL LINEAR EQUATIONS OF MOTION (3X/8X)

. X u v w h (o]
X
. “ayq ayg days dayg dayg
v Su v S Sh ™
. BaYC 6aYG aaYG aaYG BaYG
du ov ow oh Xp
o daze daze dazq daz6 daze
du ov dw oh
h 0 0 0 0 0
¢ 0 0 0 0 0
6 0 0 0 0 0
R R\ | 1 R |1 P R\| 1
ST B B 1T AT R ICTCE R B ETON O R JH TR
. 1 P : R 3 R P R| |1 P R\ |1
& |3 (3— e 50 + 2—) %(a—? e 5y * %) %(% ea 52+ %) E(% e %) 3(%%' e3§+e2—?§)
. 1 d 3 1 R 1 R 1 R
o b2 CE) (T B B BB ) OF I IO IEICE IES 2 %)
. 1 P R D P
eq E (-82 'g; + ez % + eq %1‘ % (-ez 3 + ey a—Q + g %) % (—82 % + e %% + €p %) % (-82 % + e % + €g % % (-82 %E + ey £ + e %;')




TABLE 5,- COEFFICIENTS IN STEP1 LINEAR EQUATIONS OF MOTION (3X/3X) - Concluded

€3

Seg T 821 Jg, T B3 3o Bl Sy *ear §o e o T (ea 5 toean 57 T oBaL 5T iBa1 5o foBar 5 toes1 5

Nl

o= N =

o=

aaZB BaXB da da aaXB da da, aaXB da da

dap aaXB+ dayg 93,5 Oayg . oa 92,5 dayp N oa . 3z
+ Bon _8eo + g3z _Beo 812 B__el 822 B_el 832 Sex g1z a_e2 822 B—eg 832 dea g12 —883 gz2 a“—e3 832 3—83 ‘
aaZB aaXB N BaYB . aaZB aaXB . da aaZB BaXB N aam .\ aaZB
g33 _aeo 213 B__el 823 B—el 833 B—el 813 8—92 823 a—eg 833 dea 813 5—e3 823 a——e} £33 B_e3
0 0 0
0 0 0
, |
0 0 0
®\|1(, 2@ R\ 1(o 22  _x o ®\1fo®_,n X®
3 aeo> 2 ('el Jdey ~ 2 Qe 3 ael) 2 <_el Jdep 2 Jep es 32) 2 (-91 Sen " ey deg ~ ©3 Seq
® )1 3 ® \1f,e _x, & Vil e x,, &
2 —To) 2 (eo Ser ~ %3 Ter t 2 ey ) 2 (eo deg 3 Jez T %2 Je ) 2 (eo deg ~ 3 g t 2 aea)
X R YL P Q. R 1 oF N R )L P QR
Sep ~ L Jeg 2 193 3e; T %0 Sep T de1 215232t %0 e den 2 (933, 1 % des €l Jeg
&\ |1 Q & |1 RV|1( 2, N, , R
" (—e2 Se. 8 Se, + 0 el) 3 (-e2 Seo t e 3en t %0 ez) 3 (—Ez Sen + ey deq + eg Seq
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The partials of Vyo ho, a, and B are presented in Section

VI. The partial derivatives of CA’ CY’ and CN are calculated
numerically by forming the ratio of responses in CA’ CY’ and

CN, with the perturbations in VA’ ho, o, and B that caused

them. When the aerodynamic coefficients CL’ CY’ CD or CA,

CYn, CNn are specified they are transformed to CA’ CY’ CN

via equations (134). Although Ci» Cy » Cy may be specified,
n n

a and B perturbation are used to form the partial derivatives.

The angles n and £ are calculated from o and B8 as follows:

sin n = \/cos2 B8 sin? o + sin? B cos n = cos B cos o
in ¢ = sin B cos E = cos B sin a (187)
s1 " sin n os a sin n
The partial derivatives of P, Q, and R with respect to
the state variables are
P Cug Cs1 Csy Csy axp
9 P]
3z | @ Cug Cs2 Css O |37 (188)
R €50 Cs3 Cs6 O azp
—aP—
‘where
- P - 2Rx P
exp Wp *+ Reg ) (Bvp 20x,) (P p) ayB
9 o Qx-ZPy)(Px + Rz ) (Qz -2Ry)§__ Q +§— ay (189)
vl et B P P P P P P13z 3 B
Rx - 2P R -2 + P R a,
azp (B, 2) (% Qz,p) (@ %5 ) ZB
ana
dap  _ |3 2yp dayp . [ 3zp dazp (190)
- - 2+ a ? - 2+ a2 3
o T % 152 (ke ¥ % o 20 (%p° * % g
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The partial derivatives of the equations of motion with re-
spect to the error coefficients on the aerodynamic coefficients,
mass, atmospheric density and winds, C; thru Cj3, are:

u ayp
5 el _ (qT @
sc. | V] T 181 5er |Pvs
il]. i
v azB
] o
2 1| - (191)
aC, |.
1 e_
. - . P
€0 € T8 743
3 e 1 eq -e3 €, 3 Q
aci e, 2 ey e -e;| 9C; IR
The partial derivatives of P, Q, and R are:
P Cug Cs1 Csy Csy axp
9 _ 3
30 12 = {Cue Cs2 Css O 5o [ave (192)
i i
R Cso Cs3 Csg O 8zp
a
L
with acceleration partials determined from
ayp ayp <byp + Rzé) (Pyp - 2pr) (Pzp - 2Rx5) P
_9_ _°_ X - 2P Px + Rz > z_ - 2R J
5C ayp| = 5o |%vs| + (a > Yp) ( > ) (ez, o) | wo— | 2](193)
i i
- - +
azp azn (Rxp 2Pzé> <kyp 2sz> (Qyp Pxp) R
d8p - 1 axp dayp L |2 azp azp (19%)
= - 7 7 - 7 7 ;
BCi P ayp (aXP + azp ) Z)Ci agp ayp + agp ;)(;i
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Note that an iteration loop is necessary to solve equations (192)
and (193). The partial derivatives of ayp» ayp» and a,, will

now be presented for the error coefficients C1 thru C30'

For the aerodynamic coefficient error parameters C1 thru

it -
aaXB/aC1 BaYB/BC1 BaZB/EC1 -1 0 0
aaXB/SC2 « .. 0 1 0
C « . . -
BaXB/B 3 0 0 1
dayp/aC, .. -a? or -n? 0 0
BaXB/aC5 . .. 0 Bor &g O
aaXB/BC6 ... 0 0 -a or -n
J /acC L 0 0
a TMFINZ
XB 7 = g5 M+1
=8 | 0RD T (195)
. 1
1
¢ C . e . = MRy 2
oy’ 2% 0 0 o)
M-618
BaXB/DC]O .« . - = 0 0
M.618
daXB/()(’ll o« o 0 /E_ 0
M-618
? aC e -
axn/ 12 0 0 YRe
L J ! .
where a and B or n and £ are used depending on whether the
aerodynamic coefficients are specified in terms of o and B or
n and §. The transformation matrix T is:
1 0 O CA
T= |0 1 0 for |C, | specified o (196a)
0 0 1 CN
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cos a 0 sin g CD
T=1|0 1 0 for CY specified (196b)
-sin o 0 cos a CL
1 0 0 1 c,
T=]0 cos £ =-sin & for CY specified (196¢c)
n
0 sin £ cos § CN
- B [ n
For the error coefficients on mass, C16 thru Cls’
5 axsp 13 ays
= — = 9m
5c; |PvB m 3¢y | YB (197)
A 2zB
where (‘
[ o
0 for t < t,
| O
3m/3C, ¢ [ -1 ]
am/BC17 =< -1 for t; <t <t, (198)
am/3C, ¢ | -72]
-1 ]
-1, for t, <t
2
L T2-
\.

For the error coefficients on atmospheric density, Cs1, Coo, and
C23,

_CA
; 4XB L s 2XB QSR
aYB = - 90 _ aYB + —Er—‘sﬁf‘ CY (199)
aC, p 3C; e
478 azm ~Cy
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with Bp/BC21 Op
C..h
230
'c)p/aC22 _le
Csr3h
_gp/aczaJ _Fzzhoe 23 OJ
For error coefficients on atmospheric winds, C,q and C,,,
a a
XB XB
N Pt A/ N
oC. YB VvV, 3C. YB
i A i
8z8 878
-C -C -C
Al 3V A A
+45 ) 2 |¢ Atd |c 22 +23_|¢ o
m v, Y 3C, 2o Y [ 3C, 3B | Y | acC,
-C -C 1 ~C 1
N N N
with
8V,/3Cyq  3a/3C,q 3B/3C,4 u,/V, da/3u 38/du
3VA/3C27 da 3C27 3B 8C27 VA/VA da/3v 3B/dv

The partial derivatives of the equations of motion with re-

spect to the center-of-gravity position and inertial angular rate

error coefficients C31 thru C57 are

: )

. a
w |v| =10
aC; a o]
-
h
S le) Lol
Féo F;el —-e, -—eg P
5 erf _ 1% "°3 €| 5 |Q
3C; e, 2le; eg -ep| 3¢ IR
_é3~ | €2 &1 €0 | J

(200)

(201)

(202)

(203)



For the center-of-gravity error coefficients,

3C,
with
dayp/3Cy) dayp/oC,,
¢ 3 Yo
Bayp/3C,, Pag /e,

dayp/3C,, Bayp/ac, .

and for the inertial angular

Cs7

3p/3C,
ap/aC__
a2/3C_
aB/3C,,

BP/BCL'o

ar/ac,
ap/ac,,
ap/ac, ,
ap/3C,,
8p/acC,
aP/acl+6
92/3C,;
3p/ac,
aP/ac, o
spfac_
aP/acsI
ap/ac,,
9B/aC,,
ap/ac,,
ap/acss
3B/3C,
3p/sC,

B

3

3Q/3C,  BR/AC,

dayp/3C,,
5 3¢
a,p/%C,,

C
8a,,/3C,

o o O
=" =

H O O O ©

P
Q- =
R

(=]

o]
=

O
=

OOOOZW

o o

3

s1 Csu Csy r“xp
9
s2 Cs5 © 5C, | e
53 Cs6 O A
|°?
-(Q2 + R2) PQ + R PR - Q
=|pQ - & -(P2 + R?) QR + P
PR + Q Qr - P -(P2 + @2)
rate error coefficients, Cjz¢ thru
20,5 /2C36 22y, /336 dagp /3C36]
Bagp/ 2Ca7
dayp /3C4y
d2yp /30y
dgyp /30,
a%p /2%
dayp /3Cy,
dayp /%3
3ayp /3Cuu
0 0 0 Cug Cug Csg
0 0 0 Cs1 Cs2 Cs3
o Csy Cs5 Csg
0 Cs; 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
I i

(204)

(205)

(206)
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VI. AUXILIARY TRANSFORMATIONS

The variables used in the equations of motion are not the
most convenient in terms of the user. Rathér than the inertial
velocity and position relative to a spherical planet, it is pref-
erable to use the velocity and position relative to an oblate ro-
tating planet. Visualizing the vehicle attitude from the Euler
parameters adds further complication, especially in terms of
specifying the covariances of these correlated variables, Op-
tional capability has, therefore, been included in STEP to input
and output the state and covariance matrices in more convenient
variables as shown in table 6.

TABLE 6,- INPUT/OUTPUT VARIABLES

Internal variables 7 Option 1 Option 2
u VA VA
M A ’A
w XA AA
h h h
® ® %

2] 0 0
eo v o
e 5 B
€o $ (04
€3 —

Let X be the internal variables in STEP (i.e., u, v, w,
h, ¢, 6, eo, ey, ez, and es), and let X  be the Option
1 or Option 2 variables. Then, the input transformation for the
state variables is

X = hI X" (207a)



and for the covariance and correlation matrices

P = NI P NI (207b)
C = N_. C’
uz I uz (207¢)
=N_C’
CVz 1 %2 (2074)
where the matrix NI is
N, = (3X/3X") (208)
The output transformations are
X" = h, (X) (209a)
P " =N_P NE (209b)
-0 0
. = C
Cuz NO uz (209¢)
cC° =N_C (2094d)
vz 0 vz
where the matrix NO is
N, = (3X 7/ 3X) (210)
We will next proceed to develop the relationships hI and
h and the transformation matrices N and N for the variables

0 I o]
in table 6.

A, Option 1 Transformation

When using quaternions to transform from the G-frame to the
B-frame, one can write three quaternions representing each of the
Euler angle rotations. From equations (65) and (78), the quater-
nion representing the rotation ¥ about the €6 axis in a right-
hand sense 1is

+0--1i+0-+ j+ sin o k (211)

N e
N e |

Z— = cos
¥
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Yy. The rotation about the

because §{ =17 =x/2, £ =0, and p
new y-axis, through the angle 6 is

ro o)

j+0 -k (212)

Finally, rotating through an angle about the x-axis yields

$

X~ = + si
¢ cos sin 2

N o

i4+40- 3j+0 -k (213)

Multiplying these quaternions together yields the complete trans-
formation

e e = v 8 & X E.E)

ZW Ye X¢ (cos 2 cos ) cos sin sin 5 sin 2
V.6 . & _ . v_ . 8 ¢

+ (cos ) cos 2 sin 2 sin ) sin o cos 2 i

v ... 6 ¢ % 8. _. %Y,
+ <cos > sin 5 cos 3 sin 5 cos 2 sin |3
A R N .. 8 . 9
+ (31n 9 cos 5 cos 5 cos 5 sin 5 sin 9 k (214)
which equals
I=Yr X~ =eg te 1i+tey jteszk (215)

Ve ¢

Thus, equations (214) and (215) relate the Euler parameters to the
Euler angles.

Writing the Euler angles in terms of a transformation matrix
between the G-frame and B-frame yields

(cos .\E cos 5) (sin E cos 5) (- sin 5)
G =] (- cos 5 sin E + sin ¥ sin 6 cos E)(cos $ cos G + sin E sin 8 sin E)(cos 9 sin 71;)

(sin E sin E + cos E sin 8 cos Er.)(- sin ; cos ‘\II- + cos E sin 0 sin G)(cos 9 cos '5)

(216)



Equating elements in equations (79) and (216), we obtain

- N
sin 6 = -g13 = -2 (e1ez - egez)
— 823 _ 2 (epey + epes) }
tan ¢ = = (217
gos | €8+ ef - € - <& ‘
tan J = g1z _ 2 (erep + eces)
g1a e§ - ef - ef + ef
J
Referring to figure 2 and using the above relations, we can
write the input and output transformations hI and ho as
follows:
X hp (X)) A
u = VA cos 7y, cos XA - u
v = VA cos 7, sin AA + rQP cos ¢ - v
w = -VA sin y,
h = ho + RO - RE
®» =09 } (218)
6 =20
- 3 - - - —
eo = ep1 T eps = coOs % cos 5, cos % + sin % sin g sin %
_ _. % 6 ¢ _ v .8 @
ey = e11 - €1z = cos , cos y sin 5 - sin 5y sin 5 cos
I R SR A U
es = e + epp = cos , sin 5 cos 3 + sin , cos 5 sin o
_ T R v .8 . ¢
eg = eg1 -~ egz = sin , cos 5 cos ;- cos ; sin 5 sin 3
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3 Bo )

5 s
v, = [ui + vﬁ + w2| = [(u + uw)2 + (v - 1Q, cos @ + Vw)2 + w2]
Ta = arcsin (-WA//VA)

86
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I

, = arctan (VA//UA)

h =h-R +
o o RE >(219)
=0
6 =06
E = arctan (gio/g11) = arctan [2 (ejep + eoes)/(eg + ef - e - e2)]
9 = arcsin (gy3) = -arcsin [2 (e1e5 - epep)]
© = arctan (gos/gss) = arctan [2 (epey + egeg)/(ed - ef - e5 + e3)]
Taking partial derivatives of X with respect to X’ in
equations (218) yields the NI transformation matrix in table 7
where
RS 2
dRo . _o (EE) -1} sin ® cos @ (220)
= - Rz
de Rz [\Rp,

Taking partial derivatives of X’ with respect to X in

equations (219) yields the NO transformation matrix in table 8,



L8

TABLE 7,- INPUT TRANSFORMATION FOR OPTION 1 VARIABLES, (3X/dX-)

X’ ‘
% v y A h o) | ¥ a 3
\
Buw -
u | cos 7, cos )‘A -VA sin 7, o8 7\A -VA cos 7, sin ?\A * 5h 0 0] 0 0 0
o
avw dR
v cos 7, sin 7\A -VA sin 7, sin ?\A vV, cos 7, €08 }\A fp cos O - Sh o Qp cos /0| O 0 0
]
| -rQP sin @
w -sin YA -VA cos 7, 0 0 0 00 0 0
dR0
h 0 0 0 1 W 0 0 0 0
() 0 0 0 0 1 0 0 0 0
8 0 0 0 0 0 1 0 0 0
- &3 ~€ - &L
eg 0 0 0 0 0 0 2 3 3
0 0 0 0 0 2 + esz) | 0
&1 O1-37 2 2
en 0 0 0 0 0 0 %l e e &2
e 0 0 0 0 0 0|8 |- ten) | 2
3 2 2 2
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TABLE 8, OUTPUT TRANSFORMATION FOR OPTION 1 VARIABLES (dX‘/dX)

"% X u v w h ®
v du dv, du, v,
A A ¥ L, 2w (_" - ) L, e, (_v_' . L
|9, A v, V[ 3 *Va\sn "% o8 @ Vilade TVa\se T tin 9
1/ 2 2 v
ugv W\ up + vy w BVE w 2‘?!
74 - vz oh 2 2
2 /2 2 | ya/u2 2 Ju2 2 -
VAuA+vA VA uA+vA A VA uA+vA VA us A
-y u du dv, au v
A A 1 —u L} X=X
A > = 0 - -y [v i u (— - 9 cos cp)] T v vA Y uA(a rnp 8in O
A (“A + v:) FA + vﬁ) ( R vi) AQ A\ dh ul A) @ %
dR
0 0 1 -
hy 0 do
@ 0 0 0 0 1
6 0 0 0 0 0
¥ 0 0 0 0 0
) 0 0 0 0 0
o} 0 0 0 0 0
eo ey ez €3
0 0 0 0
0 o] 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
282812 - eogas o|e2811 - e1812 zrelgll + eogan 2[eog11 + esgis
gd1 + 852 8%1 + 832 [ 831 + 852 [ 831 + g%z
2ep 2es 2eg 2e;
/1 - g% /1 - 833 71 - g% 71 - g35
2 €1833 =~ €ogo3 2[30833 + e1goa 2 €383 + eogos 2 €2833 - €38-3
833 + 835 833 + g3 g%s + g3 835 + g3




B, Option 2 Transformation

We will commence by relating the angles o, @, and B, to
the Euler parameters in a manner similar to the Euler angles in
the previous Section. To accomplish this, we must start at the
G-frame and rotate through the following five angles [see figs,
2 and 4(a)]:

Rotate through KA about the z-axis

KA A
= — 4 1 —_—
Z7\A cos 3 sin 3 k
Rotate through 7A about the y-axis (aligned with the veloc-
ity vector V )

7A Y

Y = cos 7 + sin — ]

7 A 2 2

Rotate

Rotate

Rotate

through o about the x-axis

g . o .
X = — <+ sin T 1
- cos > 5

through -B about the z-axis

- B _ . B
Z_[_3 cos 2 sin 5 k

through @ about the y-axis (aligned with the B-frame)

a Lo,
%a = cos 5 + sin 5 J

Combining all five quaternions and equating elements to ep, €3,
es, and

€3,

we obtain the attitude components of hI presented

in equations (226) thru (228) below.

Expanding the above angles into a single transformation matrix
and equating elements to G in equation (79), we can solve for o.

The variables

(136).
tions

h

Thus,
I

o and P can be obtained from equations (135) and
the Option 2 nonlinear input and output transforma-

and ho are as follows:

(221)

(222)

(223)

(224)

(225)
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where

1

€o

€1

€2

A

VA cos 7, sin AA +rQp cos ¢ -

..VA

)

V, cos y, cos %A - u

sin YA

ho + Ro - RE

¢

)
dobo
doby
dgbs

dobg

dibg + dpbo + dgby

co —?:é cOos Zé’
532 2
A TA

~8in — sin —
2 2

(226)

(227)



and

=
[0
bo = bo1 - b02=cos§cos%cos‘2‘~ sin'g'sin%sin%
= = gin & B & 9 in B ogin &
by = byi1 + bis sin 3 cos 5 cos 3 + cos o sin 5 sin 5
b (228)
bo = boy + bos = cos%cos%sin%+sin'§sin%cos%
by = by - by = sinzgcos%sin%— cosgsin%cos% )
& 800,
5 )
= | u2 2 2 = 2 - 2 o
VA [UA +VA+W] [(u+uw) +<v rQPcoscp+vw) +w:l
75 = arcsin (—W/VA>
Ap = arctan (VA/UA>
ho =h - R0 + RE
¢ =0 >(229)
B =06
goa + sin B sin YA
= t _ I
0 = arctan (g22 cos ?\A -~ go1 sin ?\A) cos 7AJ
B8 = arctan (VB /u§ + WE)
Q = arctan (WB/UB) A
where
M) i 7
ug u + uw
vy | = (G] |v - rQP cos @ + - (230)

w A\

)
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Taking partial derivatives of X with respect to X in
equations (226) thru (228) yields the NI transformation matrix
in table 9.

Taking partial derivatives of X’ with respect to X in

equations (229) and (230) and also (79) yields the output trans-

formation NO in table 10 where

a; = cos ¢ sin B cos 7A + sin o tan 7A Do
a, = sin o (gpz sin A, * 821 cos KA) cos 7, (231)

ag = co0s8 o cos B sin 7A

and
D; = gez + sin B sin 7
. 232
D> = (gzz cos AA - 821 sin KA) cos 7, ( )
and
h, = up€o + vyes - we2
hy = u,e; + v,e; + we
G2 3
A (233)
hg = Upez = Ve + weg

hy = upes - V,eo - wey

Note that in STEP2 no atmospheric winds are included; there-

fore, VA is the velocity relative to the planet surface. For the

nonlinear state only the geodetic latitude is inputed and outputed,
The transformation from geocentric to geodetic latitude and vice
versa 1is

2
tan @ = tan g (ﬁ—> (234)
P
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TABLE 9.~ INPUT TRANSFORMATIONS FOR OPTION 2 VARIABLES (3X/0X”)

D 4 VR Y A h ? [ B a
| | : ) ; buw \ )
i u cos 7, cos N, -V, siny, cos A, ] -V, cos 7, sin 7‘A% - a_h; o 0 0 0
! : va | dRo
voojcos . sin 7‘A; -VA sin 74 sin 7\A ‘ VA cos 7, cos 7\A ; PCOSQ-EI-IQP sin&p+d—q)—np cos @ [ [} 10
w . -sin 7a -VA cos 7, i [ ‘ 0 i 0 0 0 0
: | ! )
; i ! . dR ‘
h ! 0 0 | 0 , 1 == 0 0 |0
d
. | \ -
I 0 0 ‘ 0 | 0 1 0 ] 0
i ]
2] t 0 0 0 0 0 0 0 o
e,
eg 0 “Ylex + 2(dyb3 - d3by)] | - 'g—l I 0 e -kley - 2(dgbs - dzbz)] |k{~dolbsy + baz) - di(bzy - ba2o) e
E - da(byy - byz) ¥ ds(boy + boz2)]
|
el 0 Sles - 2(dabz + dsbo)] | - 32 ‘ 0 0 Sleo + 2(dgba + dsbs)] |%[do(bay = baz) - dalbsy + ba) |- 32
- da(boy + boz) - da(byy - br2)]
ez 0 jleo + 2(dyby + dabs) ] % 0 0 “hles + 2(dzhy - dsbo)] [Eldo(bay - brz) + dilboy + bo2) |32
-da(b3y + b3z) + da(bzy - b2p)]
ez 0 “kley - 2(d;bo - dabp)] %O. 0 0 Ylez - 2(dpbo + d3b;)] |%[-do(bos + boz) + dy(biy - by2) %

= dz(ba; - bzz) - ds(bay + bxz)}
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TABLE 10.- OUTPUT TRANSFORMATION FOR OPTION 2 VARTABLES (BX’/ax)a

X~
v a A w
R Yo a Yo
2 B
) UAW 'VAW } UA + VA
> & > 2 [Z = ve
VA uA+VA VA uy ot vy A
-V u
A A
A = z = 0
u? + vi) (UA + VA)
h 0 0 ¢}
[0) 0 0 0
[} 0 0 0
(2 00 ®) 2,0 | (w22, )
* du 2 du 2 Bu o1 3y 23y t By 1 dw 2 dw 83 3w
a
"Df + D2 ‘lni‘ + D3 D + D3
[Cﬂgzl - Tﬁ(UA - gleB)/’A)] [Cﬁgzz - TB("A - 822VB)/VA] [;CBgEB - Tﬁ(w - 823VB)/VA]
B
VA VA VA
a (UBgBl - WBgll) (uBgaz - WBglz) (UBgsa - WBng)
2
575 579 (77 %)
<] eo e;
x-
VR 0 0 0
7 0 0 0
I 0 0 0
h [0} o} 0
P 0 0 0
[} 1 0 0
. o an %i—o + Z[Ccel - ScC7A(C7\AeO + S7\Ae3)] as Siej_ + Z[Coeo + ScCyA(Cerl + S7\Ae2]
0% + D3 y0E + 03
, . 2[—Cﬁh4 - T8 (uBhl + thg)/vA] 2[cah3 - Ta(uBh;.- + th.,)/vA]
\'
A VA
Z(UBhg - thl) Z(UBh4 - thz)
o 0 (u§ + w2 ug o+ FB)

a,. .
Sine, cosine, and tangent are abbreviated by §, C, and T.




TABLE 10.- OUTPUT TRANFORMATION FOR OPTION 2 VARIABLES (3X“/dX) - Concluded®

1 du,, ov,,
v, [”A ET "A( S fp cos ‘P)]
A

v,

v Sh

> mnle

e
AYUA * Ta

i S (S o) cos o)
" T2 + ve)|VASh T Ya\Sh " Ypcos?
(%)

Sy 1N
(alg—h—A+aga—h-+a3%)

‘/ D% + DE

du dv
\II_A[UA a’fw + vy (-5‘5 + rD.P sin cp):l

w A
2 2 o
VA UA+VA

1 du, (va
_m [VAE—P—- uy w- rﬂP sin @

174 A\
alEPTA'*aZ +a3§

l/Df + D3

B B
- QP Cp S rﬂP S S
& feed
- QP Cp Sv rQP So S
ex es
0 0
0 0
0 0
0 0
0 0
0 0

as % + Z[Cceg - S°C7A(C7\Ae2 - S7\Ael):|

as %% + 2[Coe2 + SoC7A(C7\Ae3 - SAAeO)]

Jﬁ+@
Z[Cﬁ_hz + IB(uBhg - thl)/VA]

Va

Z(UBhl + W hg)

— ==
(UB + ""Bi

‘lnf + D3
2[-03111 + TB(uth - thz)/vA]

Va

Z(uth + th4

(u% + sz)

aSine, cosine, and tangent are abbreviated S, C, and T.
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VII. MEASUREMENT EQUATIONS

In addition to the dynamic models that describe the motion of
the vehicle, the minimum variance filter also requires measurement
models that mathematically describe the measurements being proc-
essed. In Section III, the measurement model is described by
equation (44), which consists of the nonlinear algebraic relations
that yield the measurement variables as functions of the state and
measurement parameters. Coefficients of the linearized measure-
ment equations G and H are shown in equations (51) to contain
partial derivatives of the nonlinear measurement equations with
respect to the state and measurement parameters.

In this section, the nonlinear equations for the measurements
solved in STEP are described along with their partial derivatives.
Note that the measurement equations of concern in this section
are those that are satisfied in a minimum variance sense by STEP.
The inertial angular rate measurements (and accelerometer measure-
ments in STEP2) are satisfied exactly by the dynamic models and,
therefore, are described in Section IV.

A. Radar Tracking (STEP1l and STEP2)

1, Nonlinear equations.- Consider a tracking site located on
an oblate planet that instantaneously measures the position vector
from the site to a vehicle. The vector 1s described by its magni~
tude RC, azimuth angle Ac, and elevation angle Ec’ as shown

in figure 6. Knowing the position of the vehicle (r, ®, §6),
the position of the tracking site (rT, Prps eT), we desire to

determine R, A, and E .,
c c c

The components of vehicle position in the G-~frame axes system
are 0, 0, =-r, We wish to transform components to a geodetically
oriented Cartesian axes (S~frame) system having origin at the track-

ing site and exs* Syg® ©3zg directed vertical (to the geodetic

horizon), east and north, respectively. The transformation involves
the following translations and rotations

1) Translate from vehicle to planet center;

2) Rotate through ©;

3) Rotate through ® = 6 - Ops



4) Rotate through Peps

5) Translate from planet center to tracking site;

6) Rotate through ¢ = Ppp — ® to align axes with
geodtic horizon.

_—_~\\\\\\\\\\\\\ Vehicle
hS
Y\a{\%e
Tevetioh —-
®
- \
7 \
6 - GT

Figure 6.- Radar Tracking Schematic

Combining these translations and rotations, we obtain the com-
ponents of vehicle position in the S-frame axes to be

X cos ® cos ¢ coSs Ppr + sin @ sin Ppr ~ cos ¢
yg| = T |sin © cos O + rT 0
z - cos @ cos ¢ sin Ppp + sin @ cos wDT sin ¢

e

(235)
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where

=0 - eT
= - @ 236
¢ = Qpr = P (236)
Tr = Bor + Bgp
and
R‘E 2
Opp = tan~! (E;) tan @, 237)
From figure 6, we see that
R, = (x2+y2 22)1/2 (238a)
c s s

s
- 'g P 2 - [o2 2 .
sin AC = (ys/ vt zs) cos AC (zs/ Vs + zs) (238b)
: = = 2 2
sin E_ = (xs/Rc) cos E_ (‘/ys + zS/RC) (238c)

The error model used in conjunction with the tracking measure-
ment is

C7¢ RC + Cyg + Cgo RC + Cg5 csc EC

R
Ay
By

The rate terms are obtained by differentiating equations (238)

Coy AC + Cgg + Cg3 Ac (239)

+ .
C78 EC Cg1 + Cgy EC + Cgg ctn EC

I'ZC=(X Xs+ys }'78 + z és)/RC
Ac = (zs Srs T Vs éS) /(yé + zé) (240)

e
Il

> R [,2 2
c (RC xs Xs Rc)/Rc ys + zS



.

X, (xs + T Cﬂ//; r(C@ S@DT - C® Sp C@DT) A C@DT f
Ys| YS/& -r 5@ S r Co C¢ o
z (zs - o S@)/é- r(C@ Cppp + CO So S@DT) Yo SPpp b
and
t = -w

STEP can process data from up to five station simultaneously
or separately. The error model in equation (239) represents Sta-
tion 1. In addition to estimating the coefficients Ci in cqua-

tion (239), the location of the station ®p ©Op» and hy. can

can be estimated. The error coefficients for the five stations
are presented in table 11, The error coefficients used in this
section correspond to Station 1; however, the equations apply to
the other four stations by merely replacing the numbers of the
Ci to correspond to the proper station.

TABLE 11.- RADAR TRACKING ERROR COEFFICIENTS

Station 1 2 3 4 5
Range C76 | Co1 | Ci106 | C121 |C136
Gain C79 | Cou [ €109 [Ci2u jC139
Bias Cg2 | Co7 | Cr12 | C127 | Ciu2
Rate gain Cgs | Cio0 | C115 | C130 | C1us
Refraction
Azimuth
Gain C77 1 Co2 | C107 | C122 [C137
Bias Cgo § Cos | €110 | C125 [Ciuo
Rate gain Cgz | Cog | C113 [ C128 | Cius
Elevation
Gain C7g | Ca3 | Ci0s [ C123 |C138
Bias Cg1 | Coe | C111 | C126 | C1u1
Rate gain Cgy | Cog | Ci1u | Cr29 | Ciuy
Refraction C86 ClOl Ciis C131 C1'+6
Location
Latitude, ©; |Cgg|Ci03| Ci18|C133 |Cius
Longitude, @, [ Cgg [ C104 | C119 | Cr3u | Crug
Altitude, ho.. | C9o | Cro5| C120 [ C135 | Cis0

*
Sine and cosine are abbreviated S and C.

241y *

(242)
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2.

Coefficients of linear equations.- The elements of

G and H in equation (51) are the partial derivative

where

aRC/ah 3a_/on aEc/ah

axs/ah ays/ah azs/ah aRc/ah

matrices
of RM’ AM’ and EM
parameters
ERM/Bu BAM/Bu aEM/auW
BRM/Bu 3AM/3v aEM/au
aRM/aw aAM/aw aEM/aw i
BRM/ah aAM/ah aEM/ah
aRM/am aAM/a@ BEM/8$
_aRM/ae aAM/ae BEM/BGJ
[ ¢ 0 0 aRc/au %, [ou aﬁc/au-
0 0 0 aizc/av aAc/av ok [av
0 0 0 alic/aw aAC/aw 3E_ [ ow
aRC/ah BAC/Bh aEC/ah 3k _ [3h aAc/ah atc/ah
3R, /30 24, [30 aEc/a@ aﬁc/a@ aAc/am aﬁc/a¢
aRc/ae aAC/ae aEc/ae akc/ae aAc/ae aéc/aed

3R foo 3A_[30 9EJoof= [ox  fo0 3y,/2® azs/a@ oR 2

3R /30 aAc/ae BEC/BS

100

sxs/ae ays/ae azs/ae aRC/ae

0 Cy7
cos EC
V85 gin? EC
0 0
_
Xs/Rc 0
YofRe 25/ [V * 22)
2 [Re =y (2 + 22)
0 0

with respect to the state and measurement




raftc/au

B!.lc/'c)v

%A, [ou
BAc/av
sk fow 3h_faw
3k [fan
3R /aq)

Lafzc/ae

34, / ah
aAc./acp
3A, /ae

'axs/ah
axs/aw

i axs/a@

“Yg €08 Ppp

-

ENES
3}'{5/ oV
8:?:8/ w
o% [ oh
ais/am

f}'{S/BBJ

aéc/au-T
3E, [ov
3E_[ow
3k fan
aéc/acp

ok, foo

[2%_[ou b, fou ok fou ok fou O 0 0 0
ok fov of, fov ot [ov af{c/av 0 0 0 0
ok fow 8y / w3k / w3k, e 0 0 0 0
- a:’:S/Bh a;‘:s/ah ais/ah aﬁc/ah axs/ah ays/ah azs/ah 3R [3h
ais/aqa 8}'18/3(9 aég/acp aic/acp Bxs/acp ays/acp st/acp BRc/acp
L_3:'(8/39 97,/28 aés/ae aic/ae axs/ae ay,/ 20 azs/ae aRc/aed
N 0 1/ N ]
ys/'Rc zs/(y;- + Z:) 0
2[R v/ (vE + =) °
is/Rc 0 —Rc R.4¥2 + 22
Softe <l + 2B v [(v2 + 22 —ayJ@bwg+%cwh
2[R (e - 2 A, Z cos E

ays/ah st/ah
ays/atp azs/acp -
ays/ae azs/ae

(xs + Iy €Os d))/r

r (cos ¢ sin Ppp — cos ® sin @ cos CDDT) -r sin © sin ¢

-R /R
[ o3

ys/r

r cos © cosQ

39/ 3u

0

0

2¢/ah + P/r
T/r

0

zs)/ (yg- + zg) —I:Zc zs/(Rc‘/yi + zs
[

0 x [R

(Zs - Iy sin Cb)/r
r
ys sin Oy

0
aé/Bv
0
36/vh + 8/r

36/3¢ - tan @ ¢

#/r + cot ® 6 - tan © @

(245)

(cos P cos Op. + cos ©® cos @ sin CPDT)

(246)
Bxs/ah
Bxs/BCP (247a)
axs/ae
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r-agrs/au“ (o
a&s/av 0
8§S/aw -t
ays/ah 0
3y, /30 ~ro
-a}'rs/aeJ | 0
}2435 ~o
Bés/av 0
aés/aw _ -1
aés/ah 0
aés/a¢ ~ro
Laés/agj I 0

to error coefficients

'aRM/ac76
aRM/ac79
BRM/BC82

59 /au 0
0 36/3v
0 0 3yé/3h
. . . . dy_ /3¢ .
39/3h + ©/r 36/8h + 8/r S/ (247b)
. . . ays/ae
t/r 96/3¢ - tan o &
0 #/r — tan © 6 - tan 0) b
39 /2h 0
0 26/5v
0 0 ozs/ah
. . . . oz /3@
3p/3h + ©/r 36/3h + 6/x 8 (247¢)
. . st/ae
t/r 36/0¢ + tan O @
0 r/r + cot © é - tan @ cb
-
The partial derivatives of RM’ AM’ and EM with respect
C76, .y Cgg are
B4, [3C77 3Ey[3C74 R a, B ]
BAM/3C80 oL /8081 1 1 1
M
- - . (248)
aAM/3083 aEM/'aCaL+ R, A, E_
- aEM/%Ceﬂ cse B, - ctn B/

BRM/BCBS
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Partials with respect to station location Cgg, Cgg, and Cgp

are
2 =
3C, Ry Ay By
a o L] L] o T
BCi I:Rc Ac Ec Rc Ac Ec] C7¢g 0 0
cos EC
—085 m: 0 C78 - CBG CSC2 EC
Cga 0 0
0 Cg3 0
0 0] Cgy _ (249)
where
9
3C, [Rc Ay EcJ -
i
2 B Z 2 7]
SCi [xs ys zs Rc] xs Rc 0 l/ ys + zs
2 2
s/ %e zs/<ys + zs) 0
— 2 2
zS/RC ys/(ys + zs) 0
—a 2 2
0 0] sin Ec/ ve + z2g (250)
- -
9 1 ) .« o s - -
3c. | Rc| = R3¢ [_Xs Vg 25 g Yg Zg R:I Xs
i c i
Is
z
s
1:{s
(251a)
Vs
z
s
-R
L <
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Bxs/aC88 BXS/3C89 BX%/BCQO
8y [3Css ays/aceg 3yg/3Co0| =

328/8088 325/3C89 BZ%/3C90

104

-
z Efgl -r in ¢ - i
S nge T S BCBB
0
-X d@DT c ¢ + arT
S dC88 rT os BCB

(251b)

(251¢)

(252)



ai&/acaa

a§&/ac88
aés/ac88
i [ 5 i
| A9 2 . :
Bxs/aC88 + arT/BCag cos ¢ - Ty sin ¢ EEEE - 30 P+ Vs sin Ppr ]
i 0 +icfzr_ 0
r dCgg .
do X
. DT S - 2
azs/aces - 3rT/3C88 sin ¢ - r, cos ® (EEEE -) —5ET-¢ + yg cos Ppr S
(253a)
BXS/3C89 aXS/3C89
9 C Y
ys/a 89 =% 3YS/3C89 +
st/8C89 BZS/BC89
(cos ® cos o é - sin @ sin o é) cos mDT
r |sin ® cos ® 6 + cos © sin P @
(-cos @ cos @ 6 + sin ®@ sin o @) sin @D (253b)
ais/acgo axs/acgo + cos @ 0
398/3090 _ %_ 0 =lo (253c)
825/3C90 328/3090 - sin ¢ 0
where
2
BCPDT _ i cos CPDT (254)
3Cgg RP cos? Prp
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3 2
arT o RoT (EE - 1| sin wT cos QT (255)
e B |\Rp
B. Accelerometers (STEP1)
l, Nonlinear equations.- The linear accelerations acting at
the vehicle center of gravity in the body axes directions are pre-
sented in equation (134). Using CA’ CY’ and CN because the
other forms of aerodynamic input can be transformed to CA’ CY’
and CN’ we have
2B —Cy
S
as| = m | & (256)
#zB ~Cy
Transforming these equations to the location of the inertial
measuring unit (accelerometers), we get equation (158), which is
~(@% + R2) PQ - R PR + ( X
a'XP 4 Q Q Q P
ayp | = |ayg| * PQ + R - P2 +R2) QR - P y (257)
- ; — (p2 2
asp a,n PR - Q OR + P (P% + Q°) zp

These accelerations will not agree with the measured accelerations
because of instrument misalignment, bilases, and scale-factor errors.
In an attempt to account for these anomolies, the error model of
equation (159) is used as follows

-1

By Ce1 Ce2 Ce3 8yp C70
= |Cgy Cgs C a - |c (258)
aym su Les5 Cee vp 71
2y Cs7 Ceg Coo9 2,0 C72
2. Coefficients of linear equations.- The elements of the
matrices G and H i1n equations (51) are the partial derivatives
of aym>  Byyme and 8y with respect to the state variables and

model parameters.
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The partials of the state variables are



-1
an Ce1 Cg2 Cg3 ayp

2

IQ)

oz || T |Ceu Ces Ces sz | %yp (259)
2o Cs7 Ces Ceo a,p
t=1u, v, w, h, @, ®, ep, 15 €, €3
where
ayp axB
3_ - o +
ot |3yp oc | 3yB
&zp | A:
[ + Rz - (20x - P - (2Rx - P
(Yp p) (%@ P Yp) ( p Pzp)
x = 2P Px + Rz - (2R - ] 260
(@5 Vp) (F%p p) T (Ry, — Q2 3T Q (260
Rx - 2P Ry - 2 Px + R
(®*p ¥p) (B = 2Q2,)  (Fx, + )
and
ayR -C
X 1 3q “xB 4 2 A Negligible
EE ayg = E.BC ayp + m 3z CY + 0 ?erTs %nvolving (261)
P, Q, R
478 A -Cx >

The partials of gq and CA’ CY’ and CN in equation (261) are
given in equations (185) and (186), respectively. The partials
of P, Q, and R are given in equation (188). Inspection of
equations (260) and (188) discloses that 3[P, Q, R] /3 are

required to calculate B[aXP, ayps aZP] /a;. However,

a[aXP, ayps aZP]‘/ag are necessary to determine 3[P, Q, R] /9z.
Thus, an iterative procedure must be used to solve equations
(260) and (188).

The partial derivatives of aop» and an with respect

#xB®
to error coefficients C; thru C,; are as given in equations

(195) thru (202). Partials of ayps Ayps and a,5 with respect
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to center-of-gravity error coefficients C3; thru Cgz3 are given

in equation (205). Partials of ayps  Byps and a,p with respect

to inertial angular rate error parameters C3g thru Cgyp can be
calculated from equation (260) with the partials of ayps  ayps

and being zero, and the partials of P, Q, and R are

878
given by equation (206).

The partial derivatives of agms  Byyme and ay with respect

to the acceleration error coefficients Cg; thru C;; can be
obtained by differentiating equation (258) yielding

-1

Ay C1 Ce2 Co3 ayp C70
9 9
ac, |2 | = 3¢, | Cen Ces Ces qyp| " | (262)
i i
a,y Ce7 Ces Cog a5 C72

for Ci = C61"'CG9

and

-1

axm Ce1 Ce2 Co3 C70
d 9
ac, Ay | = -|Ceu Ces Cee aC, C71 (263)
Ay Ce7 Ces Coo C72

for C, = C70, C71, C72

The partial derivatives of Cg; thru Cgg can be obtained as
follows: Denote elements of the matrix adjoint to the coefficient
matrix as follows
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(w11 w12 w13
Wp1 W22 W23 =
w31 w32 w33

(Ces Cgg — Cep Cgg) —(Cgp Cgg = Ce3 Cgg)

(Ce2 Cgp — Ce3 Cgs)

-(Cey Cgg - Ces Cg7)  (Cg1 Ceg = Cg3 Ce7) -(Ce1 Cge — Cg3 Ceu)| (264)
| (Ceu Ceg - Co65 Cs7) -—(Ce1 Ceg — Co2 Ce7)  (Ce1 Cgs = Cez Ceu)d
Then the determinant of the coefficient matrix is
D = Cgy wyy + Cgo wp1 + Cg3 ®31 (265)
and the inverse is
-1
Ce1 Cg2 Ce3 w])] Wy W13
- 1
[C] = |Ceu Ces Cee = 3 |w21 w22 w23 (266)
Ce7 Ces Cog w3] W32 W33
The partial derivatives of the inverse matrix required in
equation (262) are given below.
((.U w W W ZXQ) \
11 “45)011 ¥y5h0n 33)
2= [C]_1 = ~L(w21 w szl w szl w ) (267a)
3Ceo + ; D il j2 i3
w W w w w w
( 31 j 31 j 31 jj_
w w w w w [73)
( 12 @ q]¥12 WypfW12 35»
2 (017 = Hozz 0, Yozo o [o22 ©,,) (267b)
0Ceq 4 p D 3 32 i3
w 5 w w w w
( 32 Wygf¥s2 Vol V32 33)
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(w13 wjl)(‘*’la ‘”jzxwla “’j3)
5 S GRS S RN aere)

66 + 3
(‘”33 ‘*’jlxwas “’jZX“’sa “y3

where j§ =1, 2, or 3.

The partial derivatives of Cyg5, C7;, and Cy, 1in equation (263)
are

> 1if 1= 3
1 =
aC, {o i1f 14 ] (268)

C. Airborne Radar

Two types of airborne radars can be processed in the STEP.
The first assumes the radar transmits an omnidirectional signal.
The first return from the planet surface yields the shortest dis-
tance from the vehicle to the surface and, hence, is a measure of
altitude. Such altitude measurements can be processed as described
in Section D, which follows.

1. Nonlinear equations.-~ The second type of airborne radar,
and the type concerned herein, assumes that a radar is oriented

by a pitch angle 6P and yaw angle dY with respect to the body

axes (see fig. 7). It is further assumed that the radar measures
the slant distance, RR’ along its axis to the planet surface.
This distance depends on the radar orientation, GP and GY,

vehicle altitude, latitude, and orientation. To calculate this

slant range the azimuth and pitch angles AR and YR in figure

7 that the slant range makes with the G-frame axes must be deter-
mined.

the



Figure 7.- Airborne Radar Schematic

e-el—/

Resolving components of RR

RxB
Rys

R

ZB

[os]

[»2]

where

into the body axis yields

os]

m

=

cos GP cos GY
sin GY (269)

cos 6P sin GY
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Transforming these components to the G-frame yields

e .
‘m.|= GT (270)
B (M- 6 R |mg
g Ty
The angles XR and YR 3re, therefore,
-1 (m,
A. = tan — (271a)
R e
-1 -nG
Y = tan - (271b)
2.2 + m.2
G G

Note that RR need not be known to perform the above calculations
because it cancels in the numerator and denominator of equations
270).

The position vector from the planet center to the vehicle,
r, equals the slant range vector RR plus the planet radius

vector

Resolving equation (272) into is scalar components along the
eys  Cys and e, axes in figure 7, we can solve the resulting
equations for the slant range RR’ the longitude separation
6. =06 -9 and latitude at the intersection of the planet sur-

1 I
face and the slant range vector ®q

- [c,2 -
Co + 4f/Cy 4C1C3 (273)

RR B 2C
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R
where
2
2
C1 = a;2 + ay? (%) as
2
Co =2 la; az + (*—) ay as
2
Cr = ap? + (gi) ay? - RE2
and

a; = sin AR cos YR

a, = r cos @

az = cos @ sin YR T sin @ cos AR cos YR
ay = r sin ©

as = sin ¢ sin YR + cos @ cos AR cos yp

The incident beam intersects the surface at an angle Y1
above the local horizon and an azimuth Ap where

-1
0I r . .
Yg = sin { - g sin ® sin mI + cos P cos QI cos @J

R

I R, cos Y1

-1 Y ¢os ¢ sin @I
A. = sin
R

(274)

(275)

(276)

(277)

(278)

(279)
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where

X (280)
R'E 2
1+ (—) - 1{ sin? o

%

I

Equations (274), (275), (278), and (27Y) are not solved in STEP
but are presented above for completeness and use in future de-
velopment.

2. Coefficlents of linear equations.- The partial derivatives

of Ry with respect to STEP state variables are

3R, Ry . (o) 3C; 1 c, aC, 1 3Csy
ac Ci * Ci(2CiRy + Cp) | 3% 2C; T 261 QCiRy + Cp) | B T m EYS
¢ =nh, 9, 6, €, €1, €2, €3 (281)

Partials of RR with respect to u, v, and w are zero.

Partials of C;, C;, and C3 are

2
ac; day da3 Ry? das
5—-=2 a) ™— + a3 =+t |3 as =
z 3L 3z RP 14

2 2
2 3 2 3a
a_cz_=2 [32 .Z_ai+ as E—ai-l-(i— a'*_:a_s__l_(_RE_) as L‘] (282)

g

3C3 day REZ day
Fyae 2 lag =—+\>—) ay
z 9zC RP 3z

t=nh, ¢, 8, eg, 1, €2, e

where

raallah W i 0

da; 39 0 (2838_)
daj 96 0

da; deq| = |~ sin )‘R sin YR BYR/aeQ + cos }R cos vg BXR/aeo

da; oej ~ sin /\R sin TR ayR/Bel + cos )‘R cos Yp BAR/Bex

dap dep - sin A sin yp aYR/aez + cos Ay cos yp BXR/Bez

daz des L— sin AR sin Yy BYR/Bea + cos )‘R cos Yp QXR/aea_
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e

[3a5/5h ]
da3/3®
daj/36
dasz/deg
daz/de;

daz/desp

3aj/fdes

(cos ® cos
(cos ® cos

(cos ® cos

LCOS P cos

sin

sin

sin

sin

-aaz/ah T [ cos P 1
dar/3® -t sin @
3a, /238 0
das/deg =10
das/de; 0
das/desp 0

| 93 /de3 | O i

0
-ag
0
¢ cos XR sin YR) BYR/BeO +

¢ cos XR sin YR) ayR/ael +

P cos xR sin YR) BYR/aez +

® cos Ap sin YR) 3YR/8e3 +

sin

sin

sin

sin

® BXR/BEO
) BAR/Bel
O BAR/BEZ

® BAR/383

(283b)

(283c)
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das/oh
das /3P
dag /06
dag/3ep
das/3e;

das/dex

das/des

(sin
(sin

(sin

(sin

P cos ¥
P cos
¢ cos vp

Q@ cos

cos

cos

cos

cos

(3aq/3h
day/3p
day /26
day/deg
da,/de;
day/de,

Laa4/8eaJ

¢

rsin v)

r cos O

as

0

cos Ap sin YR) BYR/an

cos

cos

cos

AR sin YR) ayR/ael

A

A

R

R

sin

sin

YR) dvg/?€2

Yr) 3Yg/%es

ajy

aj

al

aj

cos

cos

cos

cos

QBAR/BeO
o BAR/ael
('p a}\R/aez

® BAR des

(283d)

(283e)



and

with

8AR ) 1 . amG
14 2 2) G 3¢
(16 + mg

2.2 +m2 PG - tan 2

G I h:
- -
azG/an ( ey -e3 ep
BQ,G/Be]_ e es €3
BRG/an = -€s ej €p
L8£G/8e3d L—e3 -eg e
o - r
amG/Beo ez ey -ey
amG/ael e, ~e; -eg
amG/aez ey e, eg
-BmG/8e3J ] ey -e3 ep
— - -
anG/aeo -e, e] ey
BnG/ael ey eg -ey
anG/BEZ -eqp ez ~ey
L?nG/3e3_ I ey e, ej

Y (284)
o8 BmG
¢ 37 + mG SE—) (285)
(286a)
B
mB (286b)
ng
B
my (286c)
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D. Position and Velocity

Occasionally, data become available during postflight analyses
that do not fall into the previous categories discussed, i.e.
tracking, airborne radar, accelerometer. Yet, these additional
data could yield useful information to the filtering process.
Examples include burnout conditions of a satellite booster as
later determined from estimating the orbit of the satellite; and
discrete events that occur at prespecified altitudes (triggered
by barometric devices). Frequently, these additional data can be
transformed to position and/or velocity. Therefore, capability
to process position and velocity data has been included in STEP.
Data must be specified in terms of the program state variables
u, v, w, h, ®, 6. Because of the one-to-one correspondence
between the data and the state variables, the nonlinear measure-
ment equation, equation (2), is trivial and the coefficient matrix
G 1in the linear equations, equations (4), is identity.



VIII. NUMERICAL PROCEDURES

Numerical procedures used in STEP for integrating differential
equations, inverting matrices, iterating, and interpolating will
now be reviewed.

A. Numerical Integration
The nonlinear as well as the linear differential equation
within STEP are integrated using the following fourth-order Runge

Kutta formula (ref. 24).

z . = z. "‘_6]:' [ko +2kl + 2k2 + k.z:l

o
N
i

hf[t. +h, 2. + kg]
1 1

where h 1is the computing interval, which remains fixed. Nor-
mally the computing interval is specified to be twice the inter-
val of the inertial angular rate data so that all data are in-
volved in the integration.

B. Matrix Inversion

The procedure used to invert the matrix J in equation (53e)
is the Gauss-Jordan Reduction (ref. 24). 1In this procedure,
the matrix to be inverted is augmented by the identity matrix.
The elements of each row are then operated on by replacing their
elements by linear combinations of their row elements with other
row elements until the matrix to be inverted is diagonal and nor-
mal. The augmented matrix is then the inverse sought.

The matrix inversion involved in equations (266), wherein the
inverse equals the adjoint matrix divided by the determinent is
presented in reference 25.

(287)

(288)
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C. Interpolation

Simple linear interpolation is used throughout STEP.

D. Iteration
For solving the iteration problems involved in STEPl, [equa-

tions (154) thru (158)], a successive substitution method de-
scribed in reference 24 is used.
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IX. PROGRAM APPLICATIONS AND USE

The previous sections have presented the mathematical con-
cepts and equations in STEP. 1In this section, we will be con-
cerned with how the programs are used and the types of problems
that can be solved.

A. Operating Modes

STEP has three modes of operation -- deterministic, error
analysis, and filtering and smoothing. The operating mode on
any problem is specified by input. A description of each of these
modes follows.

1. Deterministic mode.- Under this operating mode, only the
nonlinear equations of motion are integrated from initial to fi-
nal time. No state transition matrix, covariance matrix, nor
minimum variance claculations occur. No measurement data pro-
cessing occurs. The inertial angular rates (and acceleration for
STEP2) are still required to integrate the equations of motion.
The error models are included in the computation with the error
coefficients specified by input. This mode of operation is use-
ful in preflight simulations to determine the sensitivities of
the STEP1 and STEP2 models initial conditions and model parame-
ters. Monte Carlo-type studies can be conducted using this mode.
It is also useful in postflight anlysis studies to deterministi-
cally reconstruct trajectories by integrating the inertial angu-
lar rate and accelerometer data on STEP2, or integrating the in-
ertial angular rates in combination with specified aerodynamic
force coefficients, atmospheric denisty, and mass on STEPL.

2. Error analysis mode.- In this operating mode, the equa-
tions of motion are integrated, a state transition matrix calcu-
lated, and the minimum variance equations solved with the excep-
tion of equation (53a), the state update equation. Therefore,
the initially specified reference trajectory never changes and
is considered to be the best estimate. The covariance and corre-
lation matrices P, Cuz’ and Cvz’ however, are discontinuously

updated by means of the optimal linear gain as the processing pro-
ceeds and reflects the uncertainties in state and model parameter
errors. Thus, the uncertainties in state and model parameters

are determined as functions of the uncertainties in the initial
conditions, dynamic model and measurement equation parameters,
measurement type, and trajectory geometery. Note that because
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equation (53a) is not solved, no measurement data (other than
those required to integrate the equations of motion) are required.
Only the measurement data statistics are needed in equation (53f).
This mode is useful in preflight studies to investigate the ef-
fects of trajectory accuracy and shape, data accuracy and rate,
error model coefficients, and types of measurements on the accu-
racy of state and model parametrs to be estimated later during
postflight studies. Investigations of this type are reported in
references 26 thru 31.

3. Filtering and smoothing mode.- In the filtering and smooth-
ing mode of operation, the equations of motion are integrated, the
state transition matrix calculated, and the minimum variance equa-
tions are solved. This mode is only useful in postflight analy-
sis studies to estimate state and model parameters from flight data.
This mode is described in Section III.E, Computational Procedures.
Several options are available in this mode.

Updated or nonupdated references This option, discussed
in Section III.E, concerns updating or not updating the reference
trajectory about which the equations are linearized and the dif-
ferential corrections are made. If initial estimates of the state
variables are not accurately known and/or the signal-to-noise ra-
tion of the measurement data is large, the updated reference op-
tion should be used. Otherwise, the nonupdated reference option is
used. When operating with a nonupdated reference, large errors
in the initial conditions specified for the state variables can
cause the reference trajectory to diverge from the actual trajec-
tory. This divergence causes gross violations of the linearity
assumption underlying the minimum variance filtering theory. Nor-
mally, the updated reference option is used on the first couple
iterations to obtain reasonably accurate intial conditions for a
reference solution. The program is then switched to the nonupda-
ted reference option for remaining iterations.

Processing data vectors or scalars: In equations (53e),
the matrix J must be inverted. Inversion of large matrices on
digital computers, especially when they are not well conditioned,
has historically been a source of difficulty. Therefore, in the
original STEP, all measurement vectors were broken into their
scalar components and these were processed separately. Thus, J
was never larger than a 1 x 1 matrix, or a scalar. When processing
scalars at the same time, the state transition matrix is set to
the identity matrix after the first scalar data point is proces-
sed. Scalar processing has the disadvantage of requiring more
computation and eliminates the ability to account for correlation
between the measurement vector components. Therefore, optional



capability has been added to permit processing of up to three
component vectors as vectors. This requires the inversion of up
to a 3 x 3 matrix J, but reduces the computational load and
allows for the inclusion of correlation between measurement vec-
tor components in the future. Measurement data triples consid-
ered in the programs are (R,A,E) in STEPl and STEP2, and ayye
aymer 3zy o (u,v,w), and ¢(h, ©, 6 in STEPL.

c. Selection of error coefficients: The specific model para-
meters, Ci’ to be estimated in any problem are specified by the

program input. The more parameters being estimated, the longer
the computation time because of the increased number of differen-
tial equations that must be integrated to determine the state
transition matrix. For example, when estimating only the 10 state
vector components, the 10 nonlinear differential equations plus
10 independent solutions of the 10 equations system of linear
differential equations must be integrated, for a total of 110
equations. Fortunately, the coefficients of the linear differen-
tial equations are identical for all 10 solutions. If the state
vector is expanded to include five model parameters, the 10 non-
linear differential equations plus 15 independents solutions of
the 10-equation system of linear differential equations must be
integrated, yielding a total of 160 equations.

Experience has shown that the most efficient means of solv-
ing postflight estimation problems is to commence iterating in
the updated reference option with few, if any, model parameters
being estimated. After one or two iterations, a ''close' refer-
ence trajectory is obtained so the program is switched to the
nonupdated reference option and the number of model parameters
being estimated increased as the iterations proceed. This as-
sures that when the dynamic model is most complex, linearity will
be observed.

d. Smoothing: The procedure for smoothing the best estimate
was described in Section III.E. It amounts to the following:
After chronologically filtering the measurement data from initial
time to final time, a best-estimate of the expanded state vector
at final time, based on processing all data, is obtained. This
estimate yields no knowledge of what the best estimate of the
state is before final time considering the information obtained
from all data. The smoothing option is included to integrate the
final state estimate and its covariance matrix backward in time
from final time to initial time. This yields i(tltf) the best

estimate of the state at any time (between initial and final time)
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based on processing all data. During the backward smoothing the
unweighted and weighted residuals between the measurement data
and its best estimate can be calculated as well as accumulated to
form the sum of the squares of the weighted residuals.

e. A priori information: Difficulty is frequently experienced
when assigning variances to the initial estimated values speci-
fied for the state and model parameters (refs. 32 and 33). One
should be aware of the fact that any finite variance assigned to
these estimated variables implies some knowledge of the certainty
of the estimate. If absolutely no certainty can be assigned to
the initial state variable estimate then an infinite variance
should be used. There are few if any cases, however, where such
a complete lack of knowledge exists to warrant infinite variances.
Nevertheless, when in doubt about the accuracy of the initial
state, one should tend to make the variances large rather than
too small. Underestimating the variances in relation to the ac-
tual errors in the state variables causes the minimum variance
filter corrections to be too small and can result in the estima-
ted trajectory diverging from the actual trajectory.

B. Program Applications

STEP2 is the more general of the two programs because it in-
cludes no assumptions as to the nature or mathematical modeling
of the external forces and torques. Instead, it uses the actual
accelerometer and inertial angular rate measurement. These data al-
ready include all propulsive, aerodynamic, control jet, and other
miscellaneous forces and torques within them. Therefore, STEP2
is applicable to any type vehicle -- booster, reentry vehicle,

-airplane, helicopter, etc. The only requirement is that the ve-

hicle contain accelerometers and gyros that measure and record
acceleration and inertial angular rate data. Because of the few-
er assumptions in the STEP2 model formulation one would expect

to estimate a more accurate trajectory (position, velocity, and
attitude) from STEP2 than from STEP1. Furthermore, one would
expect the STEP2 model to satisfy the sensor data over a much
longer time span than STEPl. On a recent reentry application,
the STEP2 model was fit to 1300 sec of trajectory data for a

very nonlinear, maneuver lifting reentry vehicle trajectory.

STEP1 is limited to vehicles whose only external accelera-
tions are caused by aerodynamic forces of the form modeled in
equations (134) thru (143). This limits STEPLl to nonthrusting
in-atmosphere aircraft and spacecraft. Discrepancies still may
exist between the actual aerodynamic force coefficient, atmos-
pheric density, mass, and winds from those modeled in the program.



The error models in equations (147) thru (152) are an attempt to
model such discrepancies in gross terms. Neverthless, the acutal
variations experienced may not be a member of the family of can-
didates represented by the mathematical modeling. The filtering
equations have treated the error model coefficients as constant,
whereas they may actually be time-varying functions. As.a result,
the trajectory time span used when fitting the STEP1 model would
be expected to be much smaller than that of STEP2. One might an-
ticipate divergence to occur between the estimaté and actual tra-
jectory, when estimating long trajectory segments on STEPL, the
divergence being caused by inconsistencies between the mathemati-
cal characterization and actual vehicle subsystem performance.
Such occurances have been reported in references 34 thru 38. One
means of alleviating this problem in STEPl applications is to
solve a series of small separate problems rather than one large
continuous problem. In this manner, a stepwise approximation to
the time varying error coefficients can be determined. Further-
more, if a STEP2 solution has previously been determined, a com-
parison of the state between STEP1l and STEP2 will serve as a
means of checking the accuracy of the STEPLl solution.

It may occur that because of inadequate coverage or data
dropout, sufficient tracking data are unavailable to solve the
series of small-duration STEP1l problems. Because STEP2 fits
over longer time spans, a STEP2 solution may be possible with
the eradic data time history. In such cases, STEPl can be fit
to the position and velocity time histories estimated on STEP2.

C. Data Conditioning

Based on experience in the use of flight data in STEP, the
following suggestions are offered relative to preprocessing or
conditioning of data:

1) Those data that are used in the equations of motion
(i.e., accelerations for STEP2 and inertial angular
rates for both programs) should be carefully edited
to remove wild points. The edited data are then
smoothed to rid them of random noise. Because these
data are satisfied exactly by the equations of mo-
tion, the only remaining error should be systematic
and will be accounted for by the error models. A
method for editing and smoothing is presented in
Volume II of this report.
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2) The data to be processed by the minimum variance fil-
tering equations (i.e., accelerations for STEPl and/
or tracking and airborne radar for both programs)
should not be smoothed. Because of the statistical
nature of the filter theory, the random noise in the
data should not be destroyed. The data should only
be corrected for calibrations and other known syste-
matic errors.

3) Two magnetic tapes are then prepared, one containing
the smoothed and edited inertial angular rates and
accelerations, the other the unsmoothed accelerations,
tracking, airborne radar, position, and velocity to
be statistically processed. Both tapes merge the
data in chronological order and satisfying formats
described in Volume II of this report.

Martin Marietta Corporation
Denver, Colorado, June 6, 1969
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